Suppr超能文献

深度学习与可解释人工智能用于调查牙科专业人员对CAD软件性能的满意度。

Deep learning and explainable artificial intelligence for investigating dental professionals' satisfaction with CAD software performance.

作者信息

Mai Hang-Nga, Win Thaw Thaw, Kim Hyeong-Seob, Pae Ahran, Att Wael, Nguyen Dang Dinh, Lee Du-Hyeong

机构信息

Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Republic of Korea.

Hanoi University of Business and Technology, Hanoi, Vietnam.

出版信息

J Prosthodont. 2025 Feb;34(2):204-215. doi: 10.1111/jopr.13900. Epub 2024 Jul 15.

Abstract

PURPOSE

This study aimed to examine the satisfaction of dental professionals, including dental students, dentists, and dental technicians, with computer-aided design (CAD) software performance using deep learning (DL) and explainable artificial intelligence (XAI)-based behavioral analysis concepts.

MATERIALS AND METHODS

This study involved 436 dental professionals with diverse CAD experiences to assess their satisfaction with various dental CAD software programs. Through exploratory factor analysis, latent factors affecting user satisfaction were extracted from the observed variables. A multilayer perceptron artificial neural network (MLP-ANN) model was developed along with permutation feature importance analysis (PFIA) and the Shapley additive explanation (Shapley) method to gain XAI-based insights into individual factors' significance and contributions.

RESULTS

The MLP-ANN model outperformed a standard logistic linear regression model, demonstrating high accuracy (95%), precision (84%), and recall rates (84%) in capturing complex psychological problems related to human attitudes. PFIA revealed that design adjustability was the most important factor impacting dental CAD software users' satisfaction. XAI analysis highlighted the positive impacts of features supporting the finish line and crown design, while the number of design steps and installation time had negative impacts. Notably, finish-line design-related features and the number of design steps emerged as the most significant factors.

CONCLUSIONS

This study sheds light on the factors influencing dental professionals' decisions in using and selecting CAD software. This approach can serve as a proof-of-concept for applying DL-XAI-based behavioral analysis in dentistry and medicine, facilitating informed software selection and development.

摘要

目的

本研究旨在通过深度学习(DL)和基于可解释人工智能(XAI)的行为分析概念,考察包括牙科学生、牙医和牙科技师在内的牙科专业人员对计算机辅助设计(CAD)软件性能的满意度。

材料与方法

本研究纳入了436名具有不同CAD使用经验的牙科专业人员,以评估他们对各种牙科CAD软件程序的满意度。通过探索性因素分析,从观测变量中提取影响用户满意度的潜在因素。开发了一个多层感知器人工神经网络(MLP-ANN)模型,并结合排列特征重要性分析(PFIA)和夏普利加法解释(Shapley)方法,以基于XAI深入了解各个因素的重要性和贡献。

结果

MLP-ANN模型优于标准逻辑线性回归模型,在捕捉与人类态度相关的复杂心理问题方面表现出高准确率(95%)、精确率(84%)和召回率(84%)。PFIA显示,设计可调整性是影响牙科CAD软件用户满意度的最重要因素。XAI分析突出了支持龈缘线和牙冠设计的特征的积极影响,而设计步骤的数量和安装时间则有负面影响。值得注意的是,与龈缘线设计相关的特征和设计步骤的数量是最显著的因素。

结论

本研究揭示了影响牙科专业人员使用和选择CAD软件决策的因素。这种方法可作为在牙科和医学中应用基于DL-XAI的行为分析的概念验证,有助于做出明智的软件选择和开发决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验