Department of Physics, <a href="https://ror.org/02dgjyy92">University of Miami</a>, Coral Gables, Florida 33146, USA.
Department of Psychology, <a href="https://ror.org/02dgjyy92">University of Miami</a>, Coral Gables, Florida 33146, USA.
Phys Rev E. 2024 Oct;110(4-1):044303. doi: 10.1103/PhysRevE.110.044303.
Recent empirical studies have found different thermodynamic phases for collective motion in animals. However, such a thermodynamic description of human movement remains unclear. Existing studies of traffic and pedestrian flows have primarily focused on relatively high-speed mobility data, revealing only a fluidlike phase. This focus is partly because the parameter space of low-speed movement, which is governed predominantly by pairwise social interaction, remains largely uncharted. Here, we used ultrawideband radio frequency identification (UWB-RFID) technology to collect high-resolution spatiotemporal data on movements in four different classroom and playground settings. We observed two unique social phases in children's movements: a gaslike phase of free movement and a liquid-vapor coexistence phase characterized by the formation of small social groups. We also developed a simple statistical physics model that can reproduce different empirically observed phases. The proposed UWB-RFID technology can also be used to study the dynamics of active matter systems, including animal behavior, coordinating robotic swarms, and monitoring human interactions within complex systems, potentially benefiting future research in social physics.
最近的实证研究发现,动物的集体运动存在不同的热力学相。然而,人类运动的这种热力学描述尚不清楚。现有的交通和行人流动研究主要集中在相对高速的流动性数据上,仅揭示了流变体相。这种关注部分是因为由主要由成对的社会相互作用控制的低速运动的参数空间在很大程度上仍未被探索。在这里,我们使用超宽带射频识别 (UWB-RFID) 技术收集了四个不同教室和操场环境中运动的高分辨率时空数据。我们观察到儿童运动中的两个独特的社会相:自由运动的气体相和以小社会群体形成为特征的液-气相共存相。我们还开发了一个简单的统计物理模型,可以再现不同经验观察到的相。所提出的 UWB-RFID 技术还可用于研究主动物质系统的动力学,包括动物行为、协调机器人群以及监测复杂系统内的人类相互作用,这可能有益于社会物理学的未来研究。