Taujale Rahil, Uchimiya Mario, Clendinen Chaevien S, Borges Ricardo M, Turck Christoph W, Edison Arthur S
Institute of Bioinformatics, University of Georgia, 120 E Green St, Athens, Georgia 30602, United States.
Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, Georgia 30602, United States.
Anal Chem. 2024 Dec 3;96(48):19029-19037. doi: 10.1021/acs.analchem.4c03966. Epub 2024 Nov 19.
Robust annotation of compounds is a critical element in metabolomics. The C-detection NMR experiment incredible natural abundance double-quantum transfer experiment (INADEQUATE) stands out as a powerful tool for structural elucidation, but this valuable experiment is not often included in metabolomics studies. This is partly due to the lack of a community platform that provides structural information based on INADEQUATE. Also, it is often the case that a single study uses various NMR experiments synergistically to improve the quality of information or balance total NMR experiment time, but there is no public platform that can integrate the outputs of INADEQUATE with other NMR experiments. Here, we introduce PyINETA, a Python-based INADEQUATE network analysis. PyINETA is an open-source platform that provides structural information on molecules using INADEQUATE, conducts database searches using an INADEQUATE library, and integrates information on INADEQUATE and a complementary NMR experiment C -resolved experiment (C-JRES). C-JRES was chosen because of its ability to efficiently provide relative quantification in a study of the C-enriched samples. Those steps are carried out automatically, and PyINETA keeps track of all the pipeline parameters and outputs, ensuring the transparency of annotation in metabolomics. Our evaluation of PyINETA using a model mouse study showed that PyINETA successfully integrated INADEQUATE and C-JRES. The results showed that C-labeled amino acids that were fed to mice were transferred to different tissues and were transformed to other metabolites. The distribution of those compounds was tissue-specific, showing enrichment of specific metabolites in the liver, spleen, pancreas, muscle, or lung. PyINETA is freely available on NMRbox.
化合物的可靠注释是代谢组学中的关键要素。碳检测核磁共振实验——不可思议的自然丰度双量子转移实验(INADEQUATE)作为一种强大的结构解析工具脱颖而出,但这个有价值的实验在代谢组学研究中并不常被采用。部分原因是缺乏一个基于INADEQUATE提供结构信息的社区平台。此外,通常单个研究协同使用各种核磁共振实验来提高信息质量或平衡总核磁共振实验时间,但没有一个公共平台能够将INADEQUATE的输出与其他核磁共振实验整合起来。在此,我们介绍PyINETA,一种基于Python的INADEQUATE网络分析工具。PyINETA是一个开源平台,它利用INADEQUATE提供分子的结构信息,使用INADEQUATE库进行数据库搜索,并整合INADEQUATE和互补核磁共振实验——碳分辨实验(C-JRES)的信息。选择C-JRES是因为它能够在富含碳的样品研究中有效地提供相对定量信息。这些步骤是自动执行的,并且PyINETA会跟踪所有流程参数和输出结果,确保代谢组学注释的透明度。我们使用模型小鼠研究对PyINETA进行的评估表明,PyINETA成功整合了INADEQUATE和C-JRES。结果显示,喂食给小鼠的碳标记氨基酸被转移到不同组织并转化为其他代谢物。这些化合物的分布具有组织特异性,显示出特定代谢物在肝脏、脾脏、胰腺、肌肉或肺中的富集。PyINETA可在NMRbox上免费获取。