Suppr超能文献

CPIScore:一种用于蛋白质-配体结合相互作用快速评分与解读的深度学习方法。

CPIScore: A Deep Learning Approach for Rapid Scoring and Interpretation of Protein-Ligand Binding Interactions.

作者信息

Liang Li, Duan Yunxin, Zeng Chen, Wan Boheng, Yao Huifeng, Liu Haichun, Lu Tao, Zhang Yanmin, Chen Yadong, Shen Jun

机构信息

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.

State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.

出版信息

J Chem Inf Model. 2024 Dec 9;64(23):8809-8823. doi: 10.1021/acs.jcim.4c01175. Epub 2024 Nov 19.

Abstract

Protein-ligand binding affinity prediction is a crucial and challenging task in the field of drug discovery. However, traditional simulation-based computational approaches are often prohibitively time-consuming, limiting their practical utility. In this study, we introduce a novel deep learning method, CPIScore, which leverages the capabilities of Transformer and Graph Convolutional Networks (GCN) to enhance the prediction of protein-ligand binding affinity. CPIScore utilizes the Transformer architecture to capture comprehensive global contexts of protein and ligand sequences, while the GCN component effectively extracts local features from small molecular graphs. Our results demonstrate that CPIScore surpasses both traditional machine learning and other deep learning models in accuracy, achieving a Pearson's of 0.74 on our test set. Furthermore, CPIScore has been validated across multiple targets, proving its ability to discern inhibitors from a diverse compound library with high enrichment rates. Notably, when applied to a generated focused library of compounds, CPIScore successfully identified six potent small-molecule inhibitors of ATR, which were tested experimentally and four small molecules exhibited inhibitory activity below ten nanomoles. These results highlight CPIScore's potential to significantly streamline and enhance the efficiency of drug discovery processes.

摘要

蛋白质-配体结合亲和力预测是药物发现领域一项至关重要且具有挑战性的任务。然而,传统的基于模拟的计算方法通常耗时过长,限制了它们的实际应用价值。在本研究中,我们引入了一种新颖的深度学习方法CPIScore,它利用Transformer和图卷积网络(GCN)的能力来增强蛋白质-配体结合亲和力的预测。CPIScore利用Transformer架构来捕捉蛋白质和配体序列的全面全局上下文,而GCN组件则有效地从小分子图中提取局部特征。我们的结果表明,CPIScore在准确性方面超越了传统机器学习和其他深度学习模型,在我们的测试集上达到了0.74的皮尔逊相关系数。此外,CPIScore已在多个靶点上得到验证,证明了其从多样化化合物库中识别抑制剂的能力,富集率很高。值得注意的是,当应用于生成的聚焦化合物库时,CPIScore成功识别出六种有效的ATR小分子抑制剂,这些抑制剂经过实验测试,其中四种小分子表现出低于十纳摩尔的抑制活性。这些结果凸显了CPIScore在显著简化和提高药物发现过程效率方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验