Suppr超能文献

基于机器学习的早期三阴性乳腺癌预后基因特征

Machine Learning-Based Prognostic Gene Signature for Early Triple-Negative Breast Cancer.

作者信息

Kim Ju Won, Lee Jonghyun, Lee Sung Hak, Ahn Sangjeong, Park Kyong Hwa

机构信息

Division of Hemato-oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.

Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.

出版信息

Cancer Res Treat. 2025 Jul;57(3):731-740. doi: 10.4143/crt.2024.937. Epub 2024 Nov 19.

Abstract

PURPOSE

This study aimed to develop a machine learning-based approach to identify prognostic gene signatures for early-stage triple-negative breast cancer (TNBC) using next-generation sequencing data from Asian populations.

MATERIALS AND METHODS

We utilized next-generation sequencing data to analyze gene expression profiles and identify potential biomarkers. Our methodology involved integrating various machine learning techniques, including feature selection and model optimization. We employed logistic regression, Kaplan-Meier survival analysis, and receiver operating characteristic (ROC) curves to validate the identified gene signatures.

RESULTS

We identified a gene signature significantly associated with relapse in TNBC patients. The predictive model demonstrated robustness and accuracy, with an area under the ROC curve of 0.9087, sensitivity of 0.8750, and specificity of 0.9231. The Kaplan-Meier survival analysis revealed a strong association between the gene signature and patient relapse, further validated by logistic regression analysis.

CONCLUSION

This study presents a novel machine learning-based prognostic tool for TNBC, offering significant implications for early detection and personalized treatment. The identified gene signature provides a promising approach for improving the management of TNBC, contributing to the advancement of precision oncology.

摘要

目的

本研究旨在开发一种基于机器学习的方法,利用亚洲人群的下一代测序数据,识别早期三阴性乳腺癌(TNBC)的预后基因特征。

材料与方法

我们利用下一代测序数据分析基因表达谱并识别潜在生物标志物。我们的方法包括整合各种机器学习技术,包括特征选择和模型优化。我们采用逻辑回归、Kaplan-Meier生存分析和受试者工作特征(ROC)曲线来验证所识别的基因特征。

结果

我们识别出一个与TNBC患者复发显著相关的基因特征。预测模型显示出稳健性和准确性,ROC曲线下面积为0.9087,敏感性为0.8750,特异性为0.9231。Kaplan-Meier生存分析显示基因特征与患者复发之间存在密切关联,逻辑回归分析进一步验证了这一点。

结论

本研究提出了一种用于TNBC的基于机器学习的新型预后工具,对早期检测和个性化治疗具有重要意义。所识别的基因特征为改善TNBC的管理提供了一种有前景的方法,有助于推动精准肿瘤学的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验