Suppr超能文献

用于增强压电响应和降雨监测演示的基于飞秒激光的PZT薄膜几何微工程

Femtosecond-Laser-Enabled Geometric Microengineering of PZT Films for Boosted Piezoelectric Response and Rainfall Monitoring Demonstration.

作者信息

Fan Lisha, Ran Lei, Zhang Shuowen, Wu Ling, Wang Tingbin, Zhao Tianzhen, Wang Yongji, Pan Jun, Song Qiwei, Lu Jinzhong, Yao Jianhua, Wu Huaping

机构信息

College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China.

Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310023, China.

出版信息

ACS Appl Mater Interfaces. 2024 Dec 4;16(48):66718-66726. doi: 10.1021/acsami.4c15162. Epub 2024 Nov 20.

Abstract

Geometric microengineering of the active layer in a piezoelectric sensor has emerged as a hot topic to improve performance but meets challenges due to the brittle nature of piezoelectric ceramics. Here, we demonstrate that fs-laser-induced compressive stress leads to film bulging in the nanoscale and forms various shapes of nanostructures, including nanobumps, nanovolcanoes, and nanocaves on PbZrTiO (PZT) films, in a single-step, mask-free, large-scale, and rapid fashion. Highly reproducible 3D profiles of the nanostructures are finely controlled by carefully adjusting the laser energy density around the ablation threshold. Evaluation of piezoelectric response to external pressure pulses shows that the PZT films patterned with 450 nm high nanobumps exhibit a 30% increase in output voltage compared to flat PZT films. In a rainfall monitoring test, the PZT films patterned with 450 nm high nanobumps show a significantly enhanced response with varying rain droplet volumes and falling frequencies. Geometric microengineering of PZT films using a femtosecond laser direct writing route provides a guideline for material design in a wide range of microsensor applications.

摘要

压电传感器有源层的几何微纳加工已成为提高其性能的热门话题,但由于压电陶瓷的脆性本质,这一过程面临挑战。在此,我们证明飞秒激光诱导的压应力会导致纳米尺度的薄膜鼓起,并以单步、无掩膜、大规模且快速的方式在锆钛酸铅(PZT)薄膜上形成各种形状的纳米结构,包括纳米凸点、纳米火山和纳米洞穴。通过仔细调节接近烧蚀阈值的激光能量密度,可以精确控制纳米结构高度可重复的三维轮廓。对外部压力脉冲的压电响应评估表明,与平整的PZT薄膜相比,具有450 nm高纳米凸点的图案化PZT薄膜输出电压提高了30%。在降雨监测测试中,具有450 nm高纳米凸点的图案化PZT薄膜在不同雨滴体积和下落频率下表现出显著增强的响应。利用飞秒激光直写路径对PZT薄膜进行几何微纳加工,为广泛的微传感器应用中的材料设计提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验