Laurenti Laura, Paoletti Gabriele, Tinti Elisa, Galasso Fabio, Collettini Cristiano, Marone Chris
Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy.
Department of Earth Sciences, Sapienza University of Rome, Rome, Italy.
Nat Commun. 2024 Nov 20;15(1):10025. doi: 10.1038/s41467-024-54153-w.
We use seismic waves that pass through the hypocentral region of the 2016 M6.5 Norcia earthquake together with Deep Learning (DL) to distinguish between foreshocks, aftershocks and time-to-failure (TTF). Binary and N-class models defined by TTF correctly identify seismograms in test with > 90% accuracy. We use raw seismic records as input to a 7 layer CNN model to perform the classification. Here we show that DL models successfully distinguish seismic waves pre/post mainshock in accord with lab and theoretical expectations of progressive changes in crack density prior to abrupt change at failure and gradual postseismic recovery. Performance is lower for band-pass filtered seismograms (below 10 Hz) suggesting that DL models learn from the evolution of subtle changes in elastic wave attenuation. Tests to verify that our results indeed provide a proxy for fault properties included DL models trained with the wrong mainshock time and those using seismic waves far from the Norcia mainshock; both show degraded performance. Our results demonstrate that DL models have the potential to track the evolution of fault zone properties during the seismic cycle. If this result is generalizable it could improve earthquake early warning and seismic hazard analysis.
我们利用穿过2016年诺尔恰6.5级地震震源区的地震波,结合深度学习(DL)来区分前震、余震和失效时间(TTF)。由TTF定义的二分类和N分类模型在测试中能以超过90%的准确率正确识别地震图。我们将原始地震记录作为输入,输入到一个7层卷积神经网络(CNN)模型中进行分类。在这里,我们表明,深度学习模型成功地区分了主震前后的地震波,这与实验室以及关于在失效时突然变化之前裂纹密度的渐进变化和震后逐渐恢复的理论预期相符。对于带通滤波后的地震图(低于10赫兹),性能较低,这表明深度学习模型是从弹性波衰减的细微变化的演变中学习的。为验证我们的结果确实能代表断层属性而进行的测试包括:用错误的主震时间训练的深度学习模型,以及使用远离诺尔恰主震的地震波的模型;两者的性能均有所下降。我们的结果表明,深度学习模型有潜力追踪地震周期中断层带属性的演变。如果这一结果具有普遍性,它可以改善地震早期预警和地震危险性分析。