Ochai Sunday Ochonu, Hassim Ayesha, Dekker Edgar H, Magome Thuto, Lekota Kgaugelo Edward, Makgabo S Marcus, de Klerk-Loris Lin-Mari, van Schalkwyk Louis O, Kamath Pauline L, Turner Wendy C, van Heerden Henriette
Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
PLoS Negl Trop Dis. 2024 Nov 21;18(11):e0012122. doi: 10.1371/journal.pntd.0012122. eCollection 2024 Nov.
The diagnosis of anthrax, a zoonotic disease caused by Bacillus anthracis can be complicated by detection of closely related species. Conventional diagnosis of anthrax involves microscopy, culture identification of bacterial colonies and molecular detection. Genetic markers used are often virulence gene targets such as B. anthracis protective antigen (pagA, also called BAPA, occurring on plasmid pXO1), lethal factor (lef, on pXO1), capsule-encoding capB/C (located on pXO2) as well as chromosomal Ba-1. Combinations of genetic markers using real-time/quantitative polymerase chain reaction (qPCR) are used to confirm B. anthracis from culture but can also be used directly on diagnostic samples to avoid propagation and its associated biorisks and for faster identification. We investigated how the presence of closely related species could complicate anthrax diagnoses with and without culture to standardise the use of genetic markers using qPCR for accurate anthrax diagnosis. Using blood smears from 2012-2020 from wildlife mortalities (n = 1708) in Kruger National Park in South Africa where anthrax is endemic, we contrasted anthrax diagnostic results based on qPCR, microscopy, and culture. From smears, 113/1708 grew bacteria in culture, from which 506 isolates were obtained. Of these isolates, only 24.7% (125 isolates) were positive for B. anthracis based on genetic markers or microscopy. However, among these, merely 4/125 (3.2%) were confirmed B. anthracis isolates (based on morphology, microscopy, and sensitivity testing to penicillin and gamma-phage) from the blood smear, likely due to poor survival of spores on stored smears. This study identified B. cereus sensu lato, which included B. cereus and B. anthracis, Peribacillus spp., and Priestia spp. clusters using gyrB gene in selected bacterial isolates positive for pagA region using BAPA probe. Using qPCR on blood smears, 52.1% (890 samples) tested positive for B. anthracis based on one or a combination of genetic markers which included the 25 positive controls. Notably, the standard lef primer set displayed the lowest specificity and accuracy. The Ba-1+BAPA+lef combination showed 100% specificity, sensitivity, and accuracy. Various marker combinations, such as Ba-1+capB, BAPA+capB, Ba-1+BAPA+capB+lef, and BAPA+lef+capB, all demonstrated 100.0% specificity and 98.7% accuracy, while maintaining a sensitivity of 96.6%. Using Ba-1+BAPA+lef+capB, as well as Ba-1+BAPA+lef with molecular diagnosis accurately detects B. anthracis in the absence of bacterial culture. Systematically combining microscopy and molecular markers holds promise for notably reducing false positives. This significantly enhances the detection and surveillance of diseases like anthrax in southern Africa and beyond and reduces the need for propagation of the bacteria in culture.
炭疽是由炭疽芽孢杆菌引起的一种人畜共患病,由于存在密切相关的物种,其诊断可能会变得复杂。炭疽的传统诊断方法包括显微镜检查、细菌菌落的培养鉴定和分子检测。使用的遗传标记通常是毒力基因靶点,如炭疽芽孢杆菌保护性抗原(pagA,也称为BAPA,位于质粒pXO1上)、致死因子(lef,位于pXO1上)、编码荚膜的capB/C(位于pXO2上)以及染色体Ba-1。使用实时/定量聚合酶链反应(qPCR)的遗传标记组合用于从培养物中确认炭疽芽孢杆菌,但也可直接用于诊断样本,以避免细菌繁殖及其相关的生物风险,并实现更快的鉴定。我们研究了密切相关物种的存在如何在有或没有培养的情况下使炭疽诊断复杂化,以规范使用qPCR的遗传标记进行准确的炭疽诊断。我们利用南非克鲁格国家公园2012年至2020年野生动物死亡病例(n = 1708)的血涂片,这些地区炭疽流行,对比了基于qPCR、显微镜检查和培养的炭疽诊断结果。从血涂片中,113/1708在培养物中培养出细菌,从中获得了506个分离株。在这些分离株中,基于遗传标记或显微镜检查,只有24.7%(125个分离株)的炭疽芽孢杆菌呈阳性。然而,其中只有4/125(3.2%)是从血涂片中确认的炭疽芽孢杆菌分离株(基于形态学、显微镜检查以及对青霉素和γ噬菌体的敏感性测试),这可能是由于储存血涂片中孢子的存活率较低。本研究使用BAPA探针在选定的pagA区域呈阳性的细菌分离株中,利用gyrB基因鉴定出了蜡样芽孢杆菌复合群,其中包括蜡样芽孢杆菌和炭疽芽孢杆菌、类芽孢杆菌属以及Priestia属菌群。在血涂片上使用qPCR,基于包括25个阳性对照在内的一种或多种遗传标记组合,52.1%(890个样本)的炭疽芽孢杆菌检测呈阳性。值得注意的是,标准的lef引物组显示出最低的特异性和准确性。Ba-1+BAPA+lef组合显示出100%的特异性、敏感性和准确性。各种标记组合,如Ba-1+capB、BAPA+capB、Ba-1+BAPA+capB+lef和BAPA+lef+capB,均显示出100.0%的特异性和98.7%的准确性,同时保持96.6%的敏感性。使用Ba-1+BAPA+lef+capB以及Ba-1+BAPA+lef进行分子诊断可在无细菌培养的情况下准确检测炭疽芽孢杆菌。系统地结合显微镜检查和分子标记有望显著减少假阳性。这显著增强了对非洲南部及其他地区炭疽等疾病的检测和监测,并减少了在培养中繁殖细菌的需求。