Liu Xiaoying, Bian Zhiwei, Hu Shian, Dickinson Cody F, Benjamin Menny M, Jia Jia, Tian Yintai, Place Allen, Hanna George S, Luesch Hendrik, Croot Peter, Reddy Maggie M, Thomas Olivier P, Hardiman Gary, Puglisi Melany P, Yang Ming, Zhong Zhi, Lemasters John J, Korte Jeffrey E, Waters Amanda L, Heltzel Carl E, Williamson R Thomas, Strangman Wendy K, Valeriote Fred, Tius Marcus A, DiTullio Giacomo R, Ferreira Daneel, Alekseyenko Alexander, Wang Shengpeng, Hamann Mark T, Wang Xiaojuan
Department of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China.
Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States.
Chem Rev. 2024 Dec 11;124(23):13099-13177. doi: 10.1021/acs.chemrev.4c00177. Epub 2024 Nov 21.
Phytoplankton have a high potential for CO capture and conversion. Besides being a vital food source at the base of oceanic and freshwater food webs, microalgae provide a critical platform for producing chemicals and consumer products. Enhanced nutrient levels, elevated CO, and rising temperatures increase the frequency of algal blooms, which often have negative effects such as fish mortalities, loss of flora and fauna, and the production of algal toxins. Harmful algal blooms (HABs) produce toxins that pose major challenges to water quality, ecosystem function, human health, tourism, and the food web. These toxins have complex chemical structures and possess a wide range of biological properties with potential applications as new therapeutics. This review presents a balanced and comprehensive assessment of the roles of algal blooms in generating fixed carbon for the food chain, sequestering carbon, and their unique secondary metabolites. The structural complexity of these metabolites has had an unprecedented impact on structure elucidation technologies and total synthesis, which are highlighted throughout this review. In addition, the influence of biogeochemical environmental perturbations on algal blooms and their influence on biospheric environments is discussed. Lastly, we summarize work on management strategies and technologies for the control and treatment of HABs.
浮游植物具有很高的二氧化碳捕获和转化潜力。除了作为海洋和淡水食物网底层的重要食物来源外,微藻还为生产化学品和消费品提供了关键平台。营养水平的提高、二氧化碳浓度的升高和温度的上升增加了藻华发生的频率,藻华往往会产生负面影响,如鱼类死亡、动植物损失以及藻毒素的产生。有害藻华(HABs)产生的毒素对水质、生态系统功能、人类健康、旅游业和食物网构成重大挑战。这些毒素具有复杂的化学结构,并具有广泛的生物学特性,有可能作为新的治疗方法应用。本综述对藻华在为食物链生成固定碳、碳封存及其独特的次生代谢产物方面的作用进行了平衡而全面的评估。这些代谢产物的结构复杂性对结构解析技术和全合成产生了前所未有的影响,本综述将对此进行重点介绍。此外,还讨论了生物地球化学环境扰动对藻华的影响及其对生物圈环境的影响。最后,我们总结了有害藻华控制和处理的管理策略和技术方面的工作。