Wennen Myrte, Stehling Wilhelm, Marcus J Tim, Kuijer Joost P A, Lavini Cristina, Heunks Leo M A, Strijkers Gustav J, Coolen Bram F, Nederveen Aart J, Gurney-Champion Oliver J
Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands.
Department of Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands.
NMR Biomed. 2025 Jan;38(1):e5289. doi: 10.1002/nbm.5289. Epub 2024 Nov 21.
The conventional gradient-echo steady-state signal model is the basis of various spoiled gradient-echo (SPGR) based quantitative MRI models, including variable flip angle (VFA) MRI and dynamic contrast-enhanced MRI (DCE). However, including preparation pulses, such as fat suppression or saturation bands, disrupts the steady-state and leads to a bias in T and DCE parameter estimates. This work introduces a signal model that improves the accuracy of VFA T-mapping and DCE for interrupted spoiled gradient-echo (I-SPGR) acquisitions. The proposed model was applied to a VFA T-mapping I-SPGR sequence in the Gold Standard T-phantom (3 T), in the brain of four healthy volunteers (3 T), and to an abdominal DCE examination (1.5 T). T-values obtained with the proposed and conventional model were compared to reference T-values. Bland-Altman analysis (phantom) and analysis of variance (in vivo) were used to test whether bias from both methods was significantly different (p = 0.05). The proposed model outperformed the conventional model by decreasing the bias in the phantom with respect to the phantom reference values (mean bias -2 vs. -35% at 3 T) and in vivo with respect to the conventional SPGR (-6 vs. -37% bias in T, p < 0.01). The proposed signal model estimated approximately 48% (depending on baseline T) higher contrast concentrations in vivo, which resulted in decreased DCE pharmacokinetic parameter estimates of up to 35%. The proposed signal model improves the accuracy of quantitative parameter estimation from disrupted steady-state I-SPGR sequences. It therefore provides a flexible method for applying fat suppression, saturation bands, and other preparation pulses in VFA T-mapping and DCE.
传统的梯度回波稳态信号模型是各种基于扰相梯度回波(SPGR)的定量MRI模型的基础,包括可变翻转角(VFA)MRI和动态对比增强MRI(DCE)。然而,包含诸如脂肪抑制或饱和带等准备脉冲会破坏稳态,并导致T和DCE参数估计出现偏差。这项工作引入了一种信号模型,该模型提高了用于中断扰相梯度回波(I-SPGR)采集的VFA T映射和DCE的准确性。所提出的模型应用于金标准T型体模(3T)中的VFA T映射I-SPGR序列、四名健康志愿者大脑(3T)中的该序列以及腹部DCE检查(1.5T)。将使用所提出模型和传统模型获得的T值与参考T值进行比较。采用Bland-Altman分析(体模)和方差分析(体内)来检验两种方法的偏差是否存在显著差异(p = 0.05)。所提出的模型优于传统模型,相对于体模参考值,在体模中偏差减小(3T时平均偏差为-2%对-35%),相对于传统SPGR,在体内偏差减小(T值偏差为-6%对-37%,p < 0.01)。所提出的信号模型在体内估计的对比剂浓度大约高48%(取决于基线T),这导致DCE药代动力学参数估计值降低高达35%。所提出的信号模型提高了从破坏的稳态I-SPGR序列进行定量参数估计的准确性。因此,它为在VFA T映射和DCE中应用脂肪抑制、饱和带和其他准备脉冲提供了一种灵活的方法。