Suppr超能文献

VAEEG:用于提取脑电图表征的变分自编码器。

VAEEG: Variational auto-encoder for extracting EEG representation.

作者信息

Zhao Tong, Cui Yi, Ji Taoyun, Luo Jiejian, Li Wenling, Jiang Jun, Gao Zaifen, Hu Wenguang, Yan Yuxiang, Jiang Yuwu, Hong Bo

机构信息

Gnosis Neurodynamics Co. Ltd, Beijing, China; School of Biomedical Engineering, Tsinghua University, Beijing, China.

Gnosis Neurodynamics Co. Ltd, Beijing, China.

出版信息

Neuroimage. 2024 Dec 15;304:120946. doi: 10.1016/j.neuroimage.2024.120946. Epub 2024 Nov 19.

Abstract

The electroencephalogram (EEG) exhibits characteristics of complexity and strong randomness. Existing deep learning models for EEG typically target specific objectives and datasets, with their scalability constrained by the size of the dataset, resulting in limited perceptual and generalization abilities. In order to obtain more intuitive, concise, and useful representations of brain activity, we constructed a reconstruction-based self-supervised learning model for EEG based on Variational Autoencoder (VAE) with separate frequency bands, termed variational auto-encoder for EEG (VAEEG). VAEEG achieved outstanding reconstruction performance. Furthermore, we validated the efficacy of the latent representations in three clinical tasks concerning pediatric brain development, epileptic seizure, and sleep stage classification. We discovered that certain latent features: 1) correlate with adolescent brain developmental changes; 2) exhibit significant distinctions in the distribution between epileptic seizures and background activity; 3) show significant variations across different sleep cycles. In corresponding downstream fitting or classification tasks, models constructed based on the representations extracted by VAEEG demonstrated superior performance. Our model can extract effective features from complex EEG signals, serving as an early feature extractor for downstream classification tasks. This reduces the amount of data required for downstream tasks, simplifies the complexity of downstream models, and streamlines the training process.

摘要

脑电图(EEG)具有复杂性和强随机性的特征。现有的用于EEG的深度学习模型通常针对特定目标和数据集,其可扩展性受到数据集大小的限制,导致感知和泛化能力有限。为了获得更直观、简洁和有用的大脑活动表示,我们基于具有单独频段的变分自编码器(VAE)构建了一种基于重建的EEG自监督学习模型,称为脑电图变分自编码器(VAEEG)。VAEEG取得了出色的重建性能。此外,我们在关于小儿脑发育、癫痫发作和睡眠阶段分类的三个临床任务中验证了潜在表示的有效性。我们发现某些潜在特征:1)与青少年脑发育变化相关;2)在癫痫发作和背景活动之间的分布上表现出显著差异;3)在不同睡眠周期中表现出显著变化。在相应的下游拟合或分类任务中,基于VAEEG提取的表示构建的模型表现出卓越的性能。我们的模型可以从复杂的EEG信号中提取有效特征,作为下游分类任务的早期特征提取器。这减少了下游任务所需的数据量,简化了下游模型的复杂性,并简化了训练过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验