Suppr超能文献

使用序列特征嵌入和正则化多核支持向量机对阿尔茨海默病前驱阶段进行多类分类。

Multiclass classification of Alzheimer's disease prodromal stages using sequential feature embeddings and regularized multikernel support vector machine.

作者信息

Olatunde Oyekanmi O, Oyetunde Kehinde S, Han Jihun, Khasawneh Mohammad T, Yoon Hyunsoo

机构信息

Department of Systems Science and Industrial Engineering, Binghamton University, NY 13902, USA.

Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, PR China.

出版信息

Neuroimage. 2024 Dec 15;304:120929. doi: 10.1016/j.neuroimage.2024.120929. Epub 2024 Nov 19.

Abstract

The detection of patients in the cognitive normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD) stages of neurodegeneration is crucial for early treatment interventions. However, the heterogeneity of MCI data samples poses a challenge for CN vs. MCI vs. AD multiclass classification, as some samples are closer to AD while others are closer to CN in the feature space. Previous attempts to address this challenge produced inaccurate results, leading most frameworks to break the assessment into binary classification tasks such as AD vs. CN, AD vs. MCI, and CN vs. MCI. Other methods proposed sequential binary classifications such as CN vs. others and dividing others into AD vs. MCI. While those approaches may have yielded encouraging results, the sequential binary classification method makes interpretation and comparison with other frameworks challenging and subjective. Those frameworks exhibited varying accuracy scores for different binary tasks, making it unclear how to compare the model performance with other direct multiclass methods. Therefore, we introduce a classification framework comprising unsupervised ensemble manifold regularized sparse low-rank approximation and regularized multikernel support vector machine (SVM). This framework first extracts a joint feature embedding from MRI and PET neuroimaging features, which were then combined with the Apoe4, Adas11, MPACC digits, and Intracranial volume features using a regularized multikernel SVM. Using that framework, we achieved a state-of-the-art (SOTA) result in a CN vs. MCI vs. AD multiclass classification (mean accuracy: 84.87±6.09, F1 score: 84.83±6.12 vs 67.69). The methods generalize well to binary classification tasks, achieving SOTA results in all but the CN vs. MCI category, which was slightly lower than the best score by just 0.2%.

摘要

在神经退行性变的认知正常(CN)、轻度认知障碍(MCI)和阿尔茨海默病(AD)阶段检测患者对于早期治疗干预至关重要。然而,MCI数据样本的异质性给CN与MCI与AD的多类分类带来了挑战,因为在特征空间中一些样本更接近AD,而另一些则更接近CN。以往应对这一挑战的尝试结果不准确,导致大多数框架将评估分解为二元分类任务,如AD与CN、AD与MCI以及CN与MCI。其他方法提出了顺序二元分类,如CN与其他类别,以及将其他类别分为AD与MCI。虽然这些方法可能取得了令人鼓舞的结果,但顺序二元分类方法使得与其他框架的解释和比较具有挑战性且主观。这些框架在不同的二元任务中表现出不同的准确率得分,这使得不清楚如何将模型性能与其他直接的多类方法进行比较。因此,我们引入了一个分类框架,该框架包括无监督集成流形正则化稀疏低秩逼近和正则化多核支持向量机(SVM)。该框架首先从MRI和PET神经影像特征中提取联合特征嵌入,然后使用正则化多核SVM将其与Apoe4、Adas11、MPACC数字和颅内体积特征相结合。使用该框架,我们在CN与MCI与AD的多类分类中取得了领先水平(SOTA)的结果(平均准确率:84.87±6.09,F1分数:84.83±6.12对67.69)。这些方法在二元分类任务中具有良好的泛化能力,除了CN与MCI类别外,在所有类别中都取得了SOTA结果,该类别略低于最佳分数仅0.2%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验