Anikin Michael, Henry Michael F, Hodorova Viktoria, Houbaviy Hristo B, Nosek Jozef, Pestov Dimitri G, Markov Dmitriy A
Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA.
RNA. 2025 Jan 22;31(2):208-223. doi: 10.1261/rna.080254.124.
Respiration in eukaryotes depends on mitochondrial protein synthesis, which is performed by organelle-specific ribosomes translating organelle-encoded mRNAs. Although RNA maturation and stability are central events controlling mitochondrial gene expression, many of the molecular details in this pathway remain elusive. These include and -regulatory factors that generate and protect the 3' ends. Here, we mapped the 3' ends of mitochondrial mRNAs of yeasts classified into multiple families of the subphylum Saccharomycotina. We found that the processing of mitochondrial 15S rRNA and mRNAs involves species-specific sequence elements, which we term 3'-end RNA processing elements (3'-RPEs). In the 3'-RPE has long been recognized as a conserved dodecamer sequence, which recent studies have shown specifically interacts with the nuclear genome-encoded pentatricopeptide repeat protein Rmd9. We also demonstrate that, analogous to Rmd9 in , two Rmd9 orthologs from the family interact with their respective 3'-RPEs found in mRNAs and 15S rRNA. Thus, Rmd9-dependent processing of mitochondrial RNA precursors may be a common mechanism among the families of the Saccharomycotina subphylum. Surprisingly, we observed that 3'-RPEs often occur upstream of stop codons in complex I subunit mRNAs from yeasts of the CUG-Ser1 clade. We examined two of these mature mRNAs and found that their stop codons are indeed removed. Thus, translation of these stop-codon-less transcripts would require a noncanonical termination mechanism. Our findings highlight Rmd9 as a key evolutionarily conserved factor in both mitochondrial mRNA metabolism and mitoribosome biogenesis in a variety of yeasts.
真核生物的呼吸作用依赖于线粒体蛋白质合成,这一过程由细胞器特异性核糖体翻译细胞器编码的mRNA来完成。尽管RNA成熟和稳定性是控制线粒体基因表达的核心事件,但该途径中的许多分子细节仍不清楚。这些细节包括产生和保护3'末端的σ和ρ调控因子。在这里,我们绘制了属于酵母亚门多个家族的酵母线粒体mRNA的3'末端图谱。我们发现线粒体15S rRNA和mRNA的加工涉及物种特异性序列元件,我们将其称为3'末端RNA加工元件(3'-RPEs)。在酿酒酵母中,3'-RPE长期以来被认为是一个保守的十二聚体序列,最近的研究表明它与核基因组编码的五肽重复蛋白Rmd9特异性相互作用。我们还证明,类似于酿酒酵母中的Rmd9,来自克鲁维酵母家族的两个Rmd9直系同源物与它们在mRNA和15S rRNA中各自发现的3'-RPE相互作用。因此,线粒体RNA前体的Rmd9依赖性加工可能是酵母亚门各家族中的一种常见机制。令人惊讶的是,我们观察到3'-RPEs经常出现在CUG-Ser1进化枝酵母的复合体I亚基mRNA终止密码子的上游。我们检查了其中两个成熟的mRNA,发现它们的终止密码子确实被去除了。因此,这些无终止密码子转录本的翻译将需要一种非经典的终止机制。我们的发现突出了Rmd9作为多种酵母中线粒体mRNA代谢和线粒体核糖体生物发生中关键的进化保守因子。