Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland.
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
IUBMB Life. 2024 Jan;76(1):38-52. doi: 10.1002/iub.2779. Epub 2023 Aug 18.
Yeast mitochondrial genes are expressed as polycistronic transcription units that contain RNAs from different classes and show great evolutionary variability. The promoters are simple, and transcriptional control is rudimentary. Posttranscriptional mechanisms involving RNA maturation, stability, and degradation are thus the main force shaping the transcriptome and determining the expression levels of individual genes. Primary transcripts are fragmented by tRNA excision by RNase P and tRNase Z, additional processing events occur at the dodecamer site at the 3' end of protein-coding sequences. groups I and II introns are excised in a self-splicing reaction that is supported by protein splicing factors encoded by the nuclear genes, or by the introns themselves. The 3'-to-5' exoribonucleolytic complex called mtEXO is the main RNA degradation activity involved in RNA turnover and processing, supported by an auxiliary 5'-to-3' exoribonuclease Pet127p. tRNAs and, to a lesser extent, rRNAs undergo several different base modifications. This complex gene expression system relies on the coordinated action of mitochondrial and nuclear genes and undergoes rapid evolution, contributing to speciation events. Moving beyond the classical model yeast Saccharomyces cerevisiae to other budding yeasts should provide important insights into the coevolution of both genomes that constitute the eukaryotic genetic system.
酵母线粒体基因以多顺反子转录单位的形式表达,这些转录单位包含来自不同类别的 RNA,并且表现出很大的进化可变性。启动子很简单,转录控制也很基本。因此,涉及 RNA 成熟、稳定性和降解的转录后机制是塑造转录组和决定单个基因表达水平的主要力量。初级转录物通过 RNase P 和 tRNase Z 切除 tRNA 而被碎片化,在蛋白质编码序列的 3' 端的十二聚体位点处发生额外的加工事件。I 组和 II 组内含子通过由核基因编码的蛋白质剪接因子或内含子本身支持的自我剪接反应被切除。称为 mtEXO 的 3' 到 5' 外核核酸酶复合物是参与 RNA 周转和加工的主要 RNA 降解活性,由辅助的 5' 到 3' 外核核酸酶 Pet127p 支持。tRNAs 以及在较小程度上 rRNAs 经历几种不同的碱基修饰。这个复杂的基因表达系统依赖于线粒体和核基因的协调作用,并经历快速进化,为物种形成事件做出贡献。超越经典的模式酵母酿酒酵母到其他出芽酵母应该为构成真核遗传系统的两个基因组的共同进化提供重要的见解。