Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
Nat Commun. 2022 Jun 20;13(1):3541. doi: 10.1038/s41467-022-31215-5.
Protein kinases play central roles in cellular regulation by catalyzing the phosphorylation of target proteins. Kinases have inherent structural flexibility allowing them to switch between active and inactive states. Quantitative characterization of kinase conformational dynamics is challenging. Here, we use nanopore tweezers to assess the conformational dynamics of Abl kinase domain, which is shown to interconvert between two major conformational states where one conformation comprises three sub-states. Analysis of kinase-substrate and kinase-inhibitor interactions uncovers the functional roles of relevant states and enables the elucidation of the mechanism underlying the catalytic deficiency of an inactive Abl mutant G321V. Furthermore, we obtain the energy landscape of Abl kinase by quantifying the population and transition rates of the conformational states. These results extend the view on the dynamic nature of Abl kinase and suggest nanopore tweezers can be used as an efficient tool for other members of the human kinome.
蛋白激酶通过催化靶蛋白的磷酸化在细胞调节中发挥核心作用。激酶具有固有结构灵活性,使其能够在活性和非活性状态之间切换。定量描述激酶构象动力学具有挑战性。在这里,我们使用纳米孔镊子来评估 Abl 激酶结构域的构象动力学,该结构域显示在两种主要构象状态之间相互转换,其中一种构象包含三个亚态。对激酶-底物和激酶-抑制剂相互作用的分析揭示了相关状态的功能作用,并阐明了催化缺陷的无活性 Abl 突变体 G321V 的机制。此外,我们通过量化构象状态的群体和转换速率来获得 Abl 激酶的能量景观。这些结果扩展了 Abl 激酶动态性质的观点,并表明纳米孔镊子可作为人类激酶组其他成员的有效工具。