Georgiopoulou Zoi, Verykios Apostolis, Soultati Anastasia, Chroneos Alexander, Hiskia Anastasia, Aidinis Konstantinos, Skandamis Panagiotis N, Gounadaki Antonia S, Karatasios Ioannis, Triantis Theodoros M, Argitis Panagiotis, Palilis Leonidas C, Vasilopoulou Maria
Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'Demokritos', AgiaParaskevi 15341, Athens, Greece.
Solid State Physics Section, Department of Physics, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, 15784, Zografos, Greece.
Sci Rep. 2024 Nov 21;14(1):28888. doi: 10.1038/s41598-024-79977-w.
Although organic light-emitting diodes (OLEDs) are considered a mature technology, further enhancements in their efficiency are of paramount importance for advancing their incorporation in high-quality displays and flexible, wearable, electronic devices. In this regard, we propose an innovative approach, focusing on strategic modifications to the hole transport layer (HTL) through the integration of core-shell nanoparticles. Silver nanoparticles (Ag-NPs) encapsulated in a tungsten polyoxometalate compound (POM) are embedded within the prototype poly(3,4-ethylenedioxythiophene)-poly(styrenesulphonate) (PEDOT:PSS) to form the modified HTL. Our work reveals the pivotal plasmonic role of Ag-NPs in enhancing OLED device performance based on commercially available conjugated polymers. Comprehensive analyses, including UV-Vis absorption spectroscopy, atomic force microscopy, photoluminescence spectroscopy, and electrical measurements, confirm the influence of the POM encapsulated Ag-NPs on improving the device efficiency. This is attributed to the synergistic influence of enhanced hole injection and conductivity and beneficial optical effects (i.e. the Localized Surface Plasmon Resonance (LSPR) and, likely, light scattering of the POM-Ag NPs in the core-shell configuration, depending on their diameter), contributing to enhanced carrier balance and exciton recombination rate. Comparison with POM gold NPs (POM-Au NPs) highlights the distinct advantages of POM-Ag NPs. Our work reveals the potential of this innovative approach to contribute to the evolution of high-performance OLEDs, ensuring a visually compelling and efficient future.
尽管有机发光二极管(OLED)被认为是一项成熟的技术,但进一步提高其效率对于推动其在高质量显示器以及柔性、可穿戴电子设备中的应用至关重要。在这方面,我们提出了一种创新方法,重点是通过整合核壳纳米颗粒对空穴传输层(HTL)进行策略性改性。将封装在钨多金属氧酸盐化合物(POM)中的银纳米颗粒(Ag-NPs)嵌入原型聚(3,4-乙撑二氧噻吩)-聚(苯乙烯磺酸盐)(PEDOT:PSS)中,以形成改性的HTL。我们的工作揭示了Ag-NPs在基于市售共轭聚合物提高OLED器件性能方面的关键等离子体作用。包括紫外-可见吸收光谱、原子力显微镜、光致发光光谱和电学测量在内的综合分析证实了POM封装的Ag-NPs对提高器件效率的影响。这归因于增强的空穴注入和导电性以及有益的光学效应(即局域表面等离子体共振(LSPR),可能还有核壳结构中POM-Ag NPs的光散射,这取决于它们的直径)的协同作用,有助于增强载流子平衡和激子复合率。与POM金纳米颗粒(POM-Au NPs)的比较突出了POM-Ag NPs的独特优势。我们的工作揭示了这种创新方法在推动高性能OLED发展方面的潜力,确保了一个视觉上引人入胜且高效的未来。