Suppr超能文献

SSCDN:一种用于高光谱图像去噪的空间-光谱协作网络。

SSCDN: a spatial-spectral collaborative network for hyperspectral image denoising.

作者信息

Li Kaixiang, Li Renjian, Li Guiye, Liu Shaojun, He Zhengdi, Zhang Meng, Chen Lingling

出版信息

Opt Express. 2024 Sep 9;32(19):32612-32628. doi: 10.1364/OE.532838.

Abstract

Hyperspectral imaging provides the full spectrum at each point of the whole field-of-view, and thus is being extensively employed in remote sensing, surveillance, medical diagnostics and biological research. However, the intrinsically limited photons for each spectral band and the inevitable noise during acquisition result in complex degradation of hyperspectral images (HSIs) that adversely impacts the subsequent data analysis. Yet, it remains challenging for current HSI denoising methods to effectively address HSI datasets that are significantly contaminated by complex noise, especially in terms of spectral recovery. In this paper, we propose a spatial-spectral collaborative denoising network (SSCDN) that makes full use of spatial-spectral correlation information for HSI denoising. Through the combination of attention mechanism and specifically designed spatial-spectral collaborative attention module along with a multi-loss joint optimization strategy, the proposed model achieves superior denoising performance while well-preserving spectral and spatial features for complex degradation. Extensive experimental results on simulated and real data for remote sensing and biomedical applications demonstrate that the proposed SSCDN outperforms other state-of-the-art competitive HSI denoising methods under various noise settings, especially in terms of structural-spectral fidelity and the model robustness against noise.

摘要

高光谱成像在整个视场的每个点上提供全光谱,因此在遥感、监测、医学诊断和生物学研究中得到了广泛应用。然而,每个光谱波段固有的光子数量有限,且采集过程中不可避免地存在噪声,这导致高光谱图像(HSIs)出现复杂的退化,对后续的数据分析产生不利影响。然而,当前的高光谱图像去噪方法要有效处理被复杂噪声严重污染的高光谱图像数据集,尤其是在光谱恢复方面,仍然具有挑战性。在本文中,我们提出了一种空间 - 光谱协同去噪网络(SSCDN),该网络充分利用空间 - 光谱相关信息进行高光谱图像去噪。通过注意力机制与专门设计的空间 - 光谱协同注意力模块相结合,以及多损失联合优化策略,所提出的模型在有效去噪的同时,能够很好地保留复杂退化情况下的光谱和空间特征。在遥感和生物医学应用的模拟数据和真实数据上进行的大量实验结果表明,所提出的SSCDN在各种噪声设置下均优于其他最先进的竞争性高光谱图像去噪方法,特别是在结构 - 光谱保真度和模型抗噪声鲁棒性方面。

相似文献

5
6
Denoising Hyperspectral Image With Non-i.i.d. Noise Structure.非独立同分布噪声结构的高光谱图像去噪。
IEEE Trans Cybern. 2018 Mar;48(3):1054-1066. doi: 10.1109/TCYB.2017.2677944. Epub 2017 Jul 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验