Suppr超能文献

基于视觉Transformer的多级高效3D图像重建模型。

Multi-level efficient 3D image reconstruction model based on ViT.

作者信息

Zhang Renhao, Hu Bingliang, Chen Tieqiao, Zhang Geng, Li Siyuan, Chen Baocheng, Liu Jia, Jia Xinyin, Wang Xing, Su Chang, Li Xijie, Zhang Ning, Qiao Kai

出版信息

Opt Express. 2024 Sep 9;32(19):33917-33936. doi: 10.1364/OE.535211.

Abstract

Single-photon LIDAR faces challenges in high-quality 3D reconstruction due to high noise levels, low accuracy, and long inference times. Traditional methods, which rely on statistical data to obtain parameter information, are inefficient in high-noise environments. Although convolutional neural networks (CNNs)-based deep learning methods can improve 3D reconstruction quality compared to traditional methods, they struggle to effectively capture global features and long-range dependencies. To address these issues, this paper proposes a multi-level efficient 3D image reconstruction model based on vision transformer (ViT). This model leverages the self-attention mechanism of ViT to capture both global and local features and utilizes attention mechanisms to fuse and refine the extracted features. By introducing generative adversarial ngenerative adversarial networks (GANs), the reconstruction quality and robustness of the model in high noise and low photon environments are further improved. Furthermore, the proposed 3D reconstruction network has been applied in real-world imaging systems, significantly enhancing the imaging capabilities of single-photon 3D reconstruction under strong noise conditions.

摘要

由于噪声水平高、精度低和推理时间长,单光子激光雷达在高质量三维重建方面面临挑战。传统方法依靠统计数据来获取参数信息,在高噪声环境中效率低下。虽然基于卷积神经网络(CNN)的深度学习方法与传统方法相比可以提高三维重建质量,但它们难以有效捕捉全局特征和长距离依赖关系。为了解决这些问题,本文提出了一种基于视觉Transformer(ViT)的多级高效三维图像重建模型。该模型利用ViT的自注意力机制来捕捉全局和局部特征,并利用注意力机制对提取的特征进行融合和细化。通过引入生成对抗网络(GAN),进一步提高了模型在高噪声和低光子环境下的重建质量和鲁棒性。此外,所提出的三维重建网络已应用于实际成像系统,显著增强了强噪声条件下单光子三维重建的成像能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验