Suppr超能文献

基于硅光子学的可重构光子张量处理核心的计算维度

Computing dimension for a reconfigurable photonic tensor processing core based on silicon photonics.

作者信息

Ouyang Hao, Tao Zilong, You Jie, Hao Hao, Zhang Jun, Tang Shengjie, Lv Haibin, Liu Xiaoping, Cheng Xiang'ai, Jiang Tian

出版信息

Opt Express. 2024 Aug 26;32(18):31205-31219. doi: 10.1364/OE.524947.

Abstract

In the rapidly evolving field of artificial intelligence, integrated photonic computing has emerged as a promising solution to address the growing demand for high-performance computing with ultrafast speed and reduced power consumption. This study presents what we believe is a novel photonic tensor processing core (PTPC) on a chip utilizing wavelength division multiplexing technology to perform parallel multiple vector-matrix multiplications concurrently, allowing for reconfigurable computing dimensions without changing the hardware scale. Specifically, this architecture significantly enhances the number of operations in convolutional neural networks, making it superior to other photonic computing systems. Experimental evaluations demonstrate the high-speed performance of the PTPC, achieving an impressive total computing speed of 0.252 TOPS and a computing speed per unit as high as 0.06 TOPS /unit in a compact hardware scale. Additionally, proof-of-concept application experiments are conducted on benchmark datasets, including the Modified National Institute of Standards and Technology (MNIST), Google Quickdraw, and CIFAR-10, with high accuracies of 97.86%, 93.51%, and 70.22%, respectively, in image recognition and classification tasks. By enabling parallel operations in PTPC on a chip, this study opens new avenues for exploration and innovation at the intersection of silicon photonics, scalable computation, and artificial intelligence, shaping the future landscape of computing technologies.

摘要

在快速发展的人工智能领域,集成光子计算已成为一种颇具前景的解决方案,以满足对具有超高速和低功耗的高性能计算日益增长的需求。本研究展示了我们认为是一种新颖的片上光子张量处理核心(PTPC),它利用波分复用技术同时执行并行的多个向量 - 矩阵乘法,能够在不改变硬件规模的情况下实现可重构计算维度。具体而言,这种架构显著提高了卷积神经网络中的运算次数,使其优于其他光子计算系统。实验评估证明了PTPC的高速性能,在紧凑的硬件规模下实现了令人印象深刻的0.252 TOPS的总计算速度以及高达0.06 TOPS /单元的单位计算速度。此外,还在包括修改后的美国国家标准与技术研究院(MNIST)、谷歌快速绘图和CIFAR - 10等基准数据集上进行了概念验证应用实验,在图像识别和分类任务中分别达到了97.86%、93.51%和70.22%的高精度。通过在片上PTPC中实现并行操作,本研究为硅光子学、可扩展计算和人工智能交叉领域的探索与创新开辟了新途径,塑造了未来计算技术的格局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验