Suppr超能文献

使用可重复使用且无毒的3D打印多孔三角胺水凝胶高效去除全氟和多氟烷基物质

Efficient PFAS Removal Using Reusable and Non-Toxic 3D Printed Porous Trianglamine Hydrogels.

作者信息

Chaix Arnaud, Gomri Chaimaa, Benkhaled Belkacem Tarek, Habib Michel, Dupuis Romain, Petit Eddy, Richard Jason, Segala Antonin, Lichon Laure, Nguyen Christophe, Gary-Bobo Magali, Blanquer Sébastien, Semsarilar Mona

机构信息

Institut Européen des Membranes (IEM), Univ Montpellier, CNRS, ENSCM, Montpellier, 34090, France.

Institut Charles Gerhardt de Montpellier (ICGM), Univ Montpellier, CNRS, ENSCM, Montpellier, 34090, France.

出版信息

Adv Mater. 2025 Jan;37(3):e2410720. doi: 10.1002/adma.202410720. Epub 2024 Nov 21.

Abstract

Per- and polyfluoroalkyl substances (PFAS) are now a paramount concern in water remediation. Nowadays, urgent action is required for the development of advanced technologies aimed at capturing PFAS and mitigating their impact. To offer a solution, a functional 3D printed hydrogel tailored is designed to trap a broad spectrum of PFAS contaminants. The hydrogel is made of a photo-crosslinked dimethacrylate-ureido-trianglamine (DMU-Δ) and Pluronic P123 dimethacrylate (PDM) fabricated by stereolithography (SLA). With the aid of 3D-printing, porous and nonporous hydrogels (3D-PSHΔ, 3D-SHΔ) as well as quaternized hydrogels (3D-PSHΔQ) are prepared. These tailored hydrogels, show high uptake capacities and fast removal kinetics for PFAS from aqueous sources. The PFAS removal efficiency of these hydrogels are then compared to P123 hydrogels with no trianglamine (3D-SH). The 3D-SH hydrogel shows no affinity to PFAS, proving that the sorption is due to the interaction between the trianglamine (Δ) and PFAS. Metadynamic simulations also confirmed this interaction. The porous matrices showed the fastest and highest uptake capacity. 3D-PSHΔ is able to capture ≈ 91% of PFAS within 5 h using initial concentrations of 5 and 0.5 ppm in both deionized and river water. The sorption of PFAS is further enhanced by introducing permanent positive charges to the structure of the porous hydrogels, resulting in even faster sorption kinetics for both long and short PFAS chains with diverse polar heads. Besides the remarkable efficiency in capturing PFAS, these designed hydrogels are non-toxic and have outstanding chemical and thermal stability, making them a brilliant candidate for mass use in the combat against PFAS pollution.

摘要

全氟和多氟烷基物质(PFAS)如今已成为水修复领域的首要关注点。当下,迫切需要采取行动来开发先进技术,以捕获PFAS并减轻其影响。为提供解决方案,设计了一种定制的功能性3D打印水凝胶,用于捕获多种PFAS污染物。该水凝胶由通过立体光刻(SLA)制造的光交联二甲基丙烯酸酯 - 脲基 - 三胺(DMU - Δ)和聚环氧乙烷 - 聚环氧丙烷 - 聚环氧乙烷三嵌段共聚物二甲基丙烯酸酯(PDM)制成。借助3D打印,制备了多孔和无孔水凝胶(3D - PSHΔ、3D - SHΔ)以及季铵化水凝胶(3D - PSHΔQ)。这些定制的水凝胶对来自水源的PFAS显示出高吸附容量和快速去除动力学。然后将这些水凝胶对PFAS的去除效率与不含三胺的P123水凝胶(3D - SH)进行比较。3D - SH水凝胶对PFAS没有亲和力,证明吸附是由于三胺(Δ)与PFAS之间的相互作用。元动力学模拟也证实了这种相互作用。多孔基质显示出最快和最高的吸附容量。在去离子水和河水中,当初始浓度为5 ppm和0.5 ppm时,3D - PSHΔ能够在5小时内捕获约91%的PFAS。通过在多孔水凝胶结构中引入永久正电荷,PFAS的吸附进一步增强,对于具有不同极性头的长链和短链PFAS均产生更快的吸附动力学。除了在捕获PFAS方面具有显著效率外,这些设计的水凝胶无毒且具有出色的化学和热稳定性,使其成为大规模用于对抗PFAS污染的出色候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1545/11756047/3e77908a6b9a/ADMA-37-2410720-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验