Yan Shuai, Chen Shuai, McKee Morgan, Terry Alexandre, Weisbarth Ralf, Kornienko Nikolay
Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany.
Adv Sci (Weinh). 2025 Jan;12(2):e2414431. doi: 10.1002/advs.202414431. Epub 2024 Nov 21.
Electrochemical C-N coupling presents a promising strategy for converting abundant small molecules like CO and NO to produce low-carbon-intensity chemicals in a potentially more sustainable route. A prominent challenge is the limited product scope, particularly for organonitrogen chemicals featuring a variety of functional groups, alongside the limited understanding of plausible reaction mechanisms leading up to these products. In light of this, the total electrosynthesis method is reported for producing N, N-dimethylformamide (DMF), a widespread solvent and commodity chemical, from NO and CO. This method enabled a notable production rate of 1.24 mmol h g for DMF employing a hybrid Ag/Cu catalyst. Additionally, an impressive Faradaic efficiency (FE) of 28.6% is attained for DMF through oxidative coupling of dimethylamine using Ag/Cu catalyst. Through a distinctive retrosynthetic experimental analysis, the DMF synthesis pathway is systematically deconstructed, tracing its origins from dimethylamine to methylamine, and ultimately to CO and NO . The investigation revealed that the hydrogenation of coupled intermediates proves to be the limiting step, rather than the C-N coupling steps in the synthetic pathway. Finally, using a combination of in situ measurements and retrosynthetic analysis, the possible mechanism is elucidated underlying DMF synthesis and identified subsequent routes for system improvement.
电化学C-N偶联为将CO和NO等丰富的小分子转化为低碳强度化学品提供了一种很有前景的策略,有望以更具可持续性的方式实现这一目标。一个突出的挑战是产物范围有限,特别是对于具有各种官能团的有机氮化学品而言,同时对生成这些产物的合理反应机理了解有限。有鉴于此,本文报道了一种从NO和CO出发制备N,N-二甲基甲酰胺(DMF,一种广泛使用的溶剂和商品化学品)的全电合成方法。该方法使用Ag/Cu混合催化剂实现了1.24 mmol h g的显著DMF产率。此外,通过使用Ag/Cu催化剂对二甲胺进行氧化偶联,DMF的法拉第效率(FE)达到了令人印象深刻的28.6%。通过独特的逆合成实验分析,系统地解构了DMF的合成途径,追溯其从二甲胺到甲胺,最终到CO和NO的起源。研究表明,偶联中间体的氢化是限制步骤,而不是合成途径中的C-N偶联步骤。最后,结合原位测量和逆合成分析,阐明了DMF合成的可能机理,并确定了后续系统改进的途径。