Ramírez Max, Prada Alejandro, Roco Fiorella R, Queirolo Krishna, Schmidt Walter, Corvacho Fernando, Baltazar Samuel E, Rogan José, Valencia Felipe J
Departamento de Física, Facultad de Ciencias, Universidad de Chile Casilla 653 Santiago 7800024 Chile.
Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule Talca 3480112 Chile.
RSC Adv. 2025 May 28;15(22):17695-17705. doi: 10.1039/d4ra08595g. eCollection 2025 May 21.
High Entropy Alloy nanoparticles (HEA NPs) have been synthetized because they are promising materials to improve nanoscale performance. However, little theoretical study has been carried out regarding the thermal stability of HEA NPs. Here, atomistic simulations have been conducted to study the thermal response of FeCuCrCoNi HEA NPs as a function of size. Atomistic modeling shows that melting point can be explained in terms of a two-phase model without the contribution of surface melting as is predicted through liquid shell models. On the other hand, it is observed that premelting starts with a preferential mobility of Fe and Cu atoms. Simulations show that due to the enhanced diffusion there is no evidence of precipitation or clustering during the thermal load, which is independent of the HEA NP size.
高熵合金纳米颗粒(HEA NPs)已被合成,因为它们是有望改善纳米级性能的材料。然而,关于HEA NPs热稳定性的理论研究很少。在此,进行了原子模拟以研究FeCuCrCoNi HEA NPs的热响应与尺寸的关系。原子模型表明,熔点可以用两相模型来解释,而不像通过液壳模型预测的那样存在表面熔化的影响。另一方面,观察到预熔化始于Fe和Cu原子的优先迁移。模拟表明,由于扩散增强,在热负载过程中没有沉淀或聚集的迹象,这与HEA NP的尺寸无关。