Suppr超能文献

ClassifieR 2.0:将基于基因表达的交互式分层扩展到前列腺癌和高级别浆液性卵巢癌。

ClassifieR 2.0: expanding interactive gene expression-based stratification to prostate and high-grade serous ovarian cancer.

机构信息

School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.

The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland.

出版信息

BMC Bioinformatics. 2024 Nov 21;25(1):362. doi: 10.1186/s12859-024-05981-6.

Abstract

BACKGROUND

Advances in transcriptional profiling methods have enabled the discovery of molecular subtypes within and across traditional tissue-based cancer classifications. Such molecular subgroups hold potential for improving patient outcomes by guiding treatment decisions and revealing physiological distinctions and targetable pathways. Computational methods for stratifying transcriptomic data into molecular subgroups are increasingly abundant. However, assigning samples to these subtypes and other transcriptionally inferred predictions is time-consuming and requires significant bioinformatics expertise. To address this need, we recently reported "ClassifieR," a flexible, interactive cloud application for the functional annotation of colorectal and breast cancer transcriptomes. Here, we report "ClassifieR 2.0" which introduces additional modules for the molecular subtyping of prostate and high-grade serous ovarian cancer (HGSOC).

RESULTS

ClassifieR 2.0 introduces ClassifieRp and ClassifieRov, two specialised modules specifically designed to address the challenges of prostate and HGSOC molecular classification. ClassifieRp includes sigInfer, a method we developed to infer commercial prognostic prostate gene expression signatures from publicly available gene-lists or indeed any user-uploaded gene-list. ClassifieRov utilizes consensus molecular subtyping methods for HGSOC, including tools like consensusOV, for accurate ovarian cancer stratification. Both modules include functionalities present in the original ClassifieR framework for estimating cellular composition, predicting transcription factor (TF) activity and single sample gene set enrichment analysis (ssGSEA).

CONCLUSIONS

ClassifieR 2.0 combines molecular subtyping of prostate cancer and HGSOC with commonly used sample annotation tools in a single, user-friendly platform, allowing scientists without bioinformatics training to explore prostate and HGSOC transcriptional data without the need for extensive bioinformatics knowledge or manual data handling to operate various packages. Our sigInfer method within ClassifieRp enables the inference of commercially available gene signatures for prostate cancer, while ClassifieRov incorporates consensus molecular subtyping for HGSOC. Overall, ClassifieR 2.0 aims to make molecular subtyping more accessible to the wider research community. This is crucial for increased understanding of the molecular heterogeneity of these cancers and developing personalised treatment strategies.

摘要

背景

转录谱分析方法的进步使得能够在传统基于组织的癌症分类内和跨分类发现分子亚型。这些分子亚群有可能通过指导治疗决策并揭示生理差异和可靶向途径来改善患者的预后。用于将转录组数据分层为分子亚群的计算方法越来越多。然而,将样本分配到这些亚型和其他转录推断的预测中是耗时的,并且需要大量的生物信息学专业知识。为了解决这一需求,我们最近报告了“ClassifieR”,这是一种用于结肠直肠癌和乳腺癌转录组功能注释的灵活、交互式云应用程序。在这里,我们报告了“ClassifieR 2.0”,它引入了用于前列腺和高级别浆液性卵巢癌(HGSOC)分子分型的附加模块。

结果

ClassifieR 2.0 引入了 ClassifieRp 和 ClassifieRov,这两个专门的模块专门用于解决前列腺和 HGSOC 分子分类的挑战。ClassifieRp 包括 sigInfer,这是我们开发的一种方法,用于从公开的基因列表或实际上任何用户上传的基因列表中推断商业前列腺基因表达谱。ClassifieRov 利用 HGSOC 的共识分子分型方法,包括 consensusOV 等工具,用于准确的卵巢癌分层。这两个模块都包括原始 ClassifieR 框架中用于估计细胞组成、预测转录因子(TF)活性和单个样本基因集富集分析(ssGSEA)的功能。

结论

ClassifieR 2.0 将前列腺癌和 HGSOC 的分子分型与单个用户友好的平台中的常用样本注释工具结合在一起,允许没有生物信息学培训的科学家无需广泛的生物信息学知识或手动数据处理即可探索前列腺和 HGSOC 转录数据,无需操作各种软件包。我们在 ClassifieRp 中的 sigInfer 方法能够推断商业上可用的前列腺癌基因谱,而 ClassifieRov 则包含用于 HGSOC 的共识分子分型。总的来说,ClassifieR 2.0 旨在使更广泛的研究社区更容易进行分子分型。这对于增加对这些癌症的分子异质性的理解和开发个性化治疗策略至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd38/11580654/d88e1d6a47cd/12859_2024_5981_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验