文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过电穿孔实现表面蛋白特异性细胞外囊泡亚群中 miRNA 的简化加载。

Streamlined miRNA loading of surface protein-specific extracellular vesicle subpopulations through electroporation.

机构信息

Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA.

RASyn, LLC, 700 Main Street, Cambridge, MA, 02139, USA.

出版信息

Biomed Eng Online. 2024 Nov 21;23(1):116. doi: 10.1186/s12938-024-01311-2.


DOI:10.1186/s12938-024-01311-2
PMID:39574085
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11580418/
Abstract

BACKGROUND: Extracellular vesicles (EVs) have emerged as an exciting tool for targeted delivery of therapeutics for a wide range of diseases. As nano-scale membrane-bound particles derived from living cells, EVs possess inherent capabilities as carriers of biomolecules. However, the translation of EVs into viable therapeutic delivery vehicles is challenged by lengthy and inefficient processes for cargo loading and pre- and post-loading purification of EVs, resulting in limited quantity and consistency of engineered EVs. RESULTS: In this work, we develop a fast and streamlined method to load surface protein-specific subpopulations of EVs with miRNA by electroporating EVs, while they are bound to antibody-coated beads. We demonstrate the selection of CD81 EV subpopulation using magnetic microbeads, facilitating rapid EV manipulations, loading, and subsequent purification processes. Our approach shortens the time per post-electroporation EV wash by 20-fold as compared to the gold standard EV washing method, ultracentrifugation, resulting in about 2.5-h less time required to remove unloaded miRNA. In addition, we addressed the challenge of nonspecific binding of cargo molecules due to affinity-based EV selection, lowering the purity of engineered EVs, by implementing innovative strategies, including poly A carrier RNA-mediated blocking and dissociation of residual miRNA and EV-like miRNA aggregates following electroporation. CONCLUSIONS: Our streamlined method integrates magnetic bead-based selection with electroporation, enabling rapid and efficient loading of miRNA into CD81 EVs. This approach not only achieves comparable miRNA loading efficiency to conventional bulk electroporation methods but also concentrates CD81 EVs and allows for simple electroporation parameter adjustment, promising advancements in therapeutic RNA delivery systems with enhanced specificity and reduced toxicity.

摘要

背景:细胞外囊泡 (EVs) 作为一种有前途的工具,可用于将治疗剂靶向递送至广泛的疾病。作为源自活细胞的纳米级膜结合颗粒,EVs 具有作为生物分子载体的固有能力。然而,EVs 转化为可行的治疗性递药载体受到载 cargo 装载和 EV 预加载和后加载纯化的冗长且低效的过程的挑战,导致工程化 EVs 的数量和一致性有限。

结果:在这项工作中,我们通过电穿孔开发了一种快速而简化的方法,通过将 EV 与抗体包被的珠结合,将 miRNA 加载到表面蛋白特异性 EV 亚群中。我们使用磁性微珠来选择 CD81 EV 亚群,促进了 EV 的快速操作、装载和随后的纯化过程。与超速离心的金标准 EV 洗涤方法相比,我们的方法将每批电穿孔后 EV 洗涤的时间缩短了 20 倍,从而减少了约 2.5 小时的时间来去除未加载的 miRNA。此外,我们通过实施创新策略解决了由于基于亲和力的 EV 选择而导致货物分子非特异性结合,从而降低了工程化 EV 纯度的问题,包括 poly A 载体 RNA 介导的阻断以及电穿孔后残余 miRNA 和 EV 样 miRNA 聚集体的解离。

结论:我们的简化方法将基于磁性珠的选择与电穿孔相结合,实现了 miRNA 快速有效地装入 CD81 EVs。这种方法不仅达到了与传统批量电穿孔方法相当的 miRNA 装载效率,而且浓缩了 CD81 EVs,并允许简单地调整电穿孔参数,有望在治疗性 RNA 递药系统中取得进展,提高特异性并降低毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db7/11580418/12db48008dc4/12938_2024_1311_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db7/11580418/7b0ab4790637/12938_2024_1311_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db7/11580418/f4b995a6f143/12938_2024_1311_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db7/11580418/bcb5772b9680/12938_2024_1311_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db7/11580418/12db48008dc4/12938_2024_1311_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db7/11580418/7b0ab4790637/12938_2024_1311_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db7/11580418/f4b995a6f143/12938_2024_1311_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db7/11580418/bcb5772b9680/12938_2024_1311_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db7/11580418/12db48008dc4/12938_2024_1311_Fig4_HTML.jpg

相似文献

[1]
Streamlined miRNA loading of surface protein-specific extracellular vesicle subpopulations through electroporation.

Biomed Eng Online. 2024-11-21

[2]
Optimized Protocol for Plasma-Derived Extracellular Vesicles Loading with Synthetic miRNA Mimic Using Electroporation.

Methods Mol Biol. 2022

[3]
Isolation and characterization of bone mesenchymal cell small extracellular vesicles using a novel mouse model.

J Bone Miner Res. 2024-10-29

[4]
EV-Elute: A universal platform for the enrichment of functional surface marker-defined extracellular vesicle subpopulations.

J Extracell Vesicles. 2024-12

[5]
Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution.

J Extracell Vesicles. 2021-8

[6]
Snorkel-tag based affinity chromatography for recombinant extracellular vesicle purification.

J Extracell Vesicles. 2024-10

[7]
Enhanced Loading of Functional miRNA Cargo via pH Gradient Modification of Extracellular Vesicles.

Mol Ther. 2019-12-24

[8]
SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128.

Viruses. 2023-2-24

[9]
CD81-guided heterologous EVs present heterogeneous interactions with breast cancer cells.

J Biomed Sci. 2024-10-15

[10]
Methods for loading therapeutics into extracellular vesicles and generating extracellular vesicles mimetic-nanovesicles.

Methods. 2020-5-1

引用本文的文献

[1]
Extracellular vesicles in atherosclerosis cardiovascular disease: emerging roles and mechanisms.

Front Cardiovasc Med. 2025-6-24

[2]
Non-coding RNAs as key players in neurodegeneration and brain tumors: Insights into therapeutic strategies.

Iran J Basic Med Sci. 2025

[3]
Extracellular Vesicle-Based Drug Delivery Systems in Cancer Therapy.

Int J Mol Sci. 2025-5-19

[4]
Optimizing therapeutic outcomes: preconditioning strategies for MSC-derived extracellular vesicles.

Front Pharmacol. 2025-2-10

本文引用的文献

[1]
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches.

J Extracell Vesicles. 2024-2

[2]
Clinical Translation of Extracellular Vesicles.

Adv Healthc Mater. 2023-11

[3]
Immunomagnetic Separation Method Integrated with the Strep-Tag II System for Rapid Enrichment and Mild Release of Exosomes.

Anal Chem. 2023-2-21

[4]
Tailored design and preparation of magnetic nanocomposite particles for the isolation of exosomes.

Nanotechnology. 2023-1-30

[5]
The cell type dependent sorting of CD9- and CD81 to extracellular vesicles can be exploited to convey tumor sensitive cargo to target cells.

Drug Deliv. 2023-12

[6]
MicroRNAs in extracellular vesicles: Sorting mechanisms, diagnostic value, isolation, and detection technology.

Front Bioeng Biotechnol. 2022-10-17

[7]
Extracellular vesicles versus synthetic nanoparticles for drug delivery.

Nat Rev Mater. 2021-2

[8]
Extracellular vesicles for improved tumor accumulation and penetration.

Adv Drug Deliv Rev. 2022-9

[9]
Biological Features of Extracellular Vesicles and Challenges.

Front Cell Dev Biol. 2022-6-24

[10]
Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis.

Anal Bioanal Chem. 2022-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索