Skorupskii Grigorii, Le Khoa N, Cordova Dmitri Leo Mesoza, Yang Luming, Chen Tianyang, Hendon Christopher H, Arguilla Maxx Q, Dincă Mircea
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139.
Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2205127119. doi: 10.1073/pnas.2205127119. Epub 2022 Aug 15.
Metallic charge transport and porosity appear almost mutually exclusive. Whereas metals demand large numbers of free carriers and must have minimal impurities and lattice vibrations to avoid charge scattering, the voids in porous materials limit the carrier concentration, provide ample space for impurities, and create more charge-scattering vibrations due to the size and flexibility of the lattice. No microporous material has been conclusively shown to behave as a metal. Here, we demonstrate that single crystals of the porous metal-organic framework Ln(2,3,6,7,10,11-hexaoxytriphenylene) (Ln = La, Nd) are metallic. The materials display the highest room-temperature conductivities of all porous materials, reaching values above 1,000 S/cm. Single crystals of the compounds additionally show clear temperature-deactivated charge transport, a hallmark of a metallic material. Lastly, a structural transition consistent with charge density wave ordering, present only in metals and rare in any materials, provides additional conclusive proof of the metallic nature of the materials. Our results provide an example of a metal with porosity intrinsic to its structure. We anticipate that the combination of porosity and chemical tunability that these materials possess will provide a unique handle toward controlling the unconventional states that lie within them, such as charge density waves that we observed, or perhaps superconductivity.
金属电荷传输与孔隙率似乎几乎相互排斥。金属需要大量自由载流子,且必须具有极少的杂质和晶格振动以避免电荷散射,而多孔材料中的孔隙会限制载流子浓度,为杂质提供充足空间,并由于晶格的尺寸和柔韧性产生更多电荷散射振动。尚无微孔材料被确凿证明具有金属特性。在此,我们证明了多孔金属有机框架Ln(2,3,6,7,10,11 - 六氧三亚苯)(Ln = La、Nd)的单晶具有金属性。这些材料展现出所有多孔材料中最高的室温电导率,达到1000 S/cm以上。这些化合物的单晶还表现出明显的温度失活电荷传输,这是金属材料的一个特征。最后,仅在金属中存在且在任何材料中都很罕见的与电荷密度波有序化一致的结构转变,为这些材料的金属性质提供了额外的确凿证据。我们的结果提供了一种结构中固有孔隙率的金属实例。我们预计,这些材料所具有的孔隙率和化学可调控性的结合,将为控制其中存在的非常规态提供独特手段,比如我们观察到的电荷密度波,或者或许还有超导性。