Benthal Joseph T, May-Zhang Aaron A, Southard-Smith E Michelle
Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
Vanderbilt University PhD Program in Human Genetics, Nashville, TN 37232.
bioRxiv. 2024 Nov 4:2024.10.31.621315. doi: 10.1101/2024.10.31.621315.
The enteric nervous system (ENS) is a complex network of interconnected ganglia within the gastrointestinal (GI) tract. Among its diverse functions, the ENS detects bowel luminal contents and coordinates the passing of stool. ENS defects predispose to GI motility disorders. Previously, distinct enteric neuron types were cataloged by dye-filling techniques, immunohistochemistry, retrograde labeling, and electrophysiology. Recent technical advances in single cell RNA-sequencing (scRNA-seq) have enabled transcriptional profiling of hundreds to millions of individual cells from the intestine. These data allow cell types to be resolved and compared to using their transcriptional profiles ("clusters") rather than relying on antibody labeling. As a result, greater diversity of enteric neuron types has been appreciated. Because each scRNA-seq study has relied on different methods for cell isolation and library generation, numbers of neuron clusters and cell types detected differs between analyses. Cell counts in each dataset are particularly important for characterization of rare cell types since small numbers of profiled cells may not sample rare cell types. Importantly, each dataset, depending on the isolation methods, may contain different proportions of cells that are not detected in other datasets. Aggregation of datasets can effectively increase the total number of cells being analyzed and can be helpful for confirming the presence of low-abundance neuron types that might be absent or observed infrequently in any single dataset.
Here we briefly systematically review each single cell or single nucleus RNA-sequencing enteric nervous system dataset. We then reprocess and computationally integrate these select independent scRNA-seq enteric neuron datasets with the aim to identify new cell types, shared marker genes across juvenile to adult ages, dataset differences, and achieve some consensus on transcriptomic definitions of enteric neuronal subtypes.
Data aggregation generates a consensus view of enteric neuron types and improves resolution of rare neuron classes. This meta-atlas offers a deeper understanding of enteric neuron diversity and may prove useful to investigators aiming to define alterations among enteric neurons in disease states. Future studies face the challenge of connecting these deep transcriptional profiles for enteric neurons with historical classification systems.
肠神经系统(ENS)是胃肠道(GI)内相互连接的神经节组成的复杂网络。在其多种功能中,ENS可检测肠腔内容物并协调粪便排出。ENS缺陷易导致胃肠动力障碍。此前,通过染料填充技术、免疫组织化学、逆行标记和电生理学对不同的肠神经元类型进行了分类。单细胞RNA测序(scRNA-seq)的最新技术进展使得能够对来自肠道的数百至数百万个单个细胞进行转录谱分析。这些数据允许根据细胞的转录谱(“簇”)来分辨和比较细胞类型,而不是依赖抗体标记。因此,人们认识到肠神经元类型具有更高的多样性。由于每项scRNA-seq研究都依赖于不同的细胞分离和文库构建方法,不同分析中检测到的神经元簇和细胞类型数量有所不同。每个数据集中的细胞计数对于稀有细胞类型的表征尤为重要,因为少量的分析细胞可能无法涵盖稀有细胞类型。重要的是,根据分离方法的不同,每个数据集可能包含在其他数据集中未检测到的不同比例的细胞。数据集的整合可以有效增加被分析细胞的总数,有助于确认低丰度神经元类型的存在,这些类型在任何单个数据集中可能不存在或很少被观察到。
在这里,我们简要地系统回顾了每个单细胞或单细胞核RNA测序的肠神经系统数据集。然后,我们对这些选定的独立scRNA-seq肠神经元数据集进行重新处理和计算整合,目的是识别新的细胞类型、从幼年到成年期共享的标记基因、数据集差异,并在肠神经元亚型的转录组定义上达成一些共识。
数据整合产生了肠神经元类型的共识观点,并提高了稀有神经元类别的分辨率。这个元图谱提供了对肠神经元多样性的更深入理解,可能对旨在定义疾病状态下肠神经元变化的研究人员有用。未来的研究面临着将这些深入的肠神经元转录谱与历史分类系统联系起来的挑战。