Capodimonte Lucia, Meireles Fernando Teixeira Pinto, Bahr Guillermo, Bonomo Robert A, Dal Peraro Matteo, López Carolina, Vila Alejandro J
Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR).
Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.
bioRxiv. 2024 Nov 5:2024.11.04.622015. doi: 10.1101/2024.11.04.622015.
β-lactamases from Gram-negative bacteria are generally regarded as soluble, periplasmic enzymes. NDMs have been exceptionally characterized as lipoproteins anchored to the outer membrane. A bioinformatics study on all sequenced β-lactamases was performed that revealed a predominance of putative lipidated enzymes in the class D OXAs. Namely, 60% of the OXA class D enzymes contain a lipobox sequence in their signal peptide, that is expected to trigger lipidation and membrane anchoring. This contrasts with β-lactamases from other classes, which are predicted to be mostly soluble proteins. Almost all (> 99%) putative lipidated OXAs are present in spp. Importantly, we further demonstrate that OXA-23 and OXA-24/40 are lipidated, membrane-bound proteins in . In contrast, OXA-48 (commonly produced by Enterobacterales) lacks a lipobox and is a soluble protein. Outer membrane vesicles (OMVs) from cells expressing OXA-23 and OXA-24/40 contain these enzymes in their active form. Moreover, OXA-loaded OMVs were able to protect and cells susceptible to piperacillin and imipenem. These results permit us to conclude that membrane binding is a bacterial host-specific phenomenon in OXA enzymes. These findings reveal that membrane-bound β-lactamases are more common than expected and support the hypothesis that OMVs loaded with lipidated β-lactamases are vehicles for antimicrobial resistance and its dissemination. This advantage could be crucial in polymicrobial infections, in which are usually involved, and underscore the relevance of identifying the cellular localization of lactamases to better understand their physiology and target them.
革兰氏阴性菌的β-内酰胺酶通常被认为是可溶性的周质酶。新德里金属β-内酰胺酶(NDMs)的特殊之处在于其被表征为锚定在外膜上的脂蛋白。我们对所有已测序的β-内酰胺酶进行了一项生物信息学研究,结果显示在D类OXA酶中,假定的脂化酶占主导地位。具体而言,60%的D类OXA酶在其信号肽中含有脂质框序列,预计该序列会引发脂化和膜锚定。这与其他类别的β-内酰胺酶形成对比,其他类别的β-内酰胺酶预计大多是可溶性蛋白质。几乎所有(>99%)假定脂化的OXA酶都存在于 种中。重要的是,我们进一步证明OXA-23和OXA-24/40是 中的脂化膜结合蛋白。相比之下,OXA-48(通常由肠杆菌科产生)缺乏脂质框,是一种可溶性蛋白质。表达OXA-23和OXA-24/40的 细胞产生的外膜囊泡(OMVs)中含有这些处于活性形式的酶。此外,装载有OXA的OMVs能够保护对哌拉西林和亚胺培南敏感的 细胞和 细胞。这些结果使我们能够得出结论,膜结合是OXA酶中一种细菌宿主特异性现象。这些发现表明,膜结合的β-内酰胺酶比预期的更常见,并支持这样一种假设,即装载有脂化β-内酰胺酶的OMVs是抗菌药物耐药性及其传播的载体。这一优势在通常涉及 的多微生物感染中可能至关重要,并强调了确定β-内酰胺酶的细胞定位以更好地了解其生理学并将其作为靶点的相关性。