Bereska Jacqueline I, Zeeuw Michiel, Wagenaar Luuk, Jenssen Håvard Bjørke, Wesdorp Nina J, van der Meulen Delanie, Bereska Leonard F, Gavves Efstratios, Janssen Boris V, Besselink Marc G, Marquering Henk A, van Waesberghe Jan-Hein T M, Aghayan Davit L, Pelanis Egidijus, van den Bergh Janneke, Nota Irene I M, Moos Shira, Kemmerich Gunter, Syversveen Trygve, Kolrud Finn Kristian, Huiskens Joost, Swijnenburg Rutger-Jan, Punt Cornelis J A, Stoker Jaap, Edwin Bjørn, Fretland Åsmund A, Kazemier Geert, Verpalen Inez M
Cancer Center Amsterdam, Amsterdam, The Netherlands.
Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands.
Insights Imaging. 2024 Nov 22;15(1):279. doi: 10.1186/s13244-024-01820-7.
Total tumor volume (TTV) is associated with overall and recurrence-free survival in patients with colorectal cancer liver metastases (CRLM). However, the labor-intensive nature of such manual assessments has hampered the clinical adoption of TTV as an imaging biomarker. This study aimed to develop and externally evaluate a CRLM auto-segmentation model on CT scans, to facilitate the clinical adoption of TTV.
We developed an auto-segmentation model to segment CRLM using 783 contrast-enhanced portal venous phase CTs (CT-PVP) of 373 patients. We used a self-learning setup whereby we first trained a teacher model on 99 manually segmented CT-PVPs from three radiologists. The teacher model was then used to segment CRLM in the remaining 663 CT-PVPs for training the student model. We used the DICE score and the intraclass correlation coefficient (ICC) to compare the student model's segmentations and the TTV obtained from these segmentations to those obtained from the merged segmentations. We evaluated the student model in an external test set of 50 CT-PVPs from 35 patients from the Oslo University Hospital and an internal test set of 21 CT-PVPs from 10 patients from the Amsterdam University Medical Centers.
The model reached a mean DICE score of 0.85 (IQR: 0.05) and 0.83 (IQR: 0.10) on the internal and external test sets, respectively. The ICC between the segmented volumes from the student model and from the merged segmentations was 0.97 on both test sets.
The developed colorectal cancer liver metastases auto-segmentation model achieved a high DICE score and near-perfect agreement for assessing TTV.
AI model segments colorectal liver metastases on CT with high performance on two test sets. Accurate segmentation of colorectal liver metastases could facilitate the clinical adoption of total tumor volume as an imaging biomarker for prognosis and treatment response monitoring.
Developed colorectal liver metastases segmentation model to facilitate total tumor volume assessment. Model achieved high performance on internal and external test sets. Model can improve prognostic stratification and treatment planning for colorectal liver metastases.
全肿瘤体积(TTV)与结直肠癌肝转移(CRLM)患者的总生存期和无复发生存期相关。然而,这种手动评估的劳动强度大,阻碍了TTV作为一种影像生物标志物在临床上的应用。本研究旨在开发并对外评估一种基于CT扫描的CRLM自动分割模型,以促进TTV在临床上的应用。
我们开发了一种自动分割模型,使用373例患者的783幅门静脉期增强CT(CT-PVP)来分割CRLM。我们采用了一种自学习设置,首先在来自三位放射科医生手动分割的99幅CT-PVP上训练一个教师模型。然后使用该教师模型对其余663幅CT-PVP中的CRLM进行分割,以训练学生模型。我们使用DICE分数和组内相关系数(ICC)来比较学生模型的分割结果以及从这些分割结果中获得的TTV与从合并分割中获得的结果。我们在来自奥斯陆大学医院的35例患者的50幅CT-PVP外部测试集和来自阿姆斯特丹大学医学中心的10例患者的21幅CT-PVP内部测试集中评估了学生模型。
该模型在内部和外部测试集上的平均DICE分数分别达到0.85(四分位距:0.05)和0.83(四分位距:0.10)。在两个测试集上,学生模型分割的体积与合并分割的体积之间的ICC均为0.97。
所开发的结直肠癌肝转移自动分割模型在评估TTV方面获得了较高的DICE分数和近乎完美的一致性。
人工智能模型在两个测试集上对CT上的结直肠癌肝转移进行了高性能分割。结直肠癌肝转移的准确分割有助于全肿瘤体积作为预后和治疗反应监测的影像生物标志物在临床上的应用。
开发了结直肠癌肝转移分割模型以促进全肿瘤体积评估。该模型在内部和外部测试集上均表现出高性能。该模型可改善结直肠癌肝转移的预后分层和治疗规划。