Suppr超能文献

利用三维受激发射损耗(STED)成像技术对拟南芥细胞核进行成像。

3D STED Imaging of Isolated Arabidopsis thaliana Nuclei.

机构信息

Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.

出版信息

Methods Mol Biol. 2025;2873:263-280. doi: 10.1007/978-1-0716-4228-3_15.

Abstract

Microscopy imaging of chromatin offers valuable insights into its spatial organization in the nucleus, a novel epigenetic dimension influencing the genome's functions. Particularly, visualization at the nanoscale in single cells is uniquely complementary to molecular profiling methods averaging chromatin configuration and composition over thousands of cells. How are chromatin and chromosomal domains distributed in relation to gene expression? How variable are these configurations? How do chromatin domains evolve in structure, composition, and distribution during cellular differentiation or cellular responses to environmental stimuli? Super-resolution microscopy techniques, like stimulated emission depletion (STED), are key in answering such questions. However, such imaging techniques are not often used in the field of plant cell biology compared to mammalian counterparts, which has greatly advanced our understanding of the 3D principles in genome organization. In an effort to bridge this gap, we provide a clear guide for isolating, embedding, immunostaining, and STED imaging intact leaf nuclei from Arabidopsis thaliana in 3D.

摘要

染色质的显微镜成像为研究其在细胞核中的空间组织提供了有价值的见解,这是影响基因组功能的新型表观遗传维度。特别是,在单细胞中进行纳米级可视化对于平均数千个细胞的染色质构型和组成的分子分析方法具有独特的补充作用。染色质和染色体结构域与基因表达的关系如何分布?这些构象的可变性如何?在细胞分化或细胞对环境刺激的反应过程中,染色质结构域如何在结构、组成和分布方面演变?超分辨率显微镜技术,如受激发射损耗(STED),是回答这些问题的关键。然而,与在哺乳动物细胞生物学领域相比,这种成像技术在植物细胞生物学领域并不常用,这极大地促进了我们对基因组组织的 3D 原理的理解。为了弥补这一差距,我们提供了一个清晰的指南,用于从拟南芥中分离、包埋、免疫染色和 STED 成像完整的叶片核,以便在 3D 中进行研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验