a Gregor Mendel Institute (GMI) of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC) , Vienna , Austria.
b Norwich Research Park, Earlham Institute , Norwich , UK.
Nucleus. 2019 Dec;10(1):181-212. doi: 10.1080/19491034.2019.1644592.
The eukaryotic cell nucleus is a central organelle whose architecture determines genome function at multiple levels. Deciphering nuclear organizing principles influencing cellular responses and identity is a timely challenge. Despite many similarities between plant and animal nuclei, plant nuclei present intriguing specificities. Complementary to molecular and biochemical approaches, 3D microscopy is indispensable for resolving nuclear architecture. However, novel solutions are required for capturing cell-specific, sub-nuclear and dynamic processes. We provide a pointer for utilising high-to-super-resolution microscopy and image processing to probe plant nuclear architecture in 3D at the best possible spatial and temporal resolution and at quantitative and cell-specific levels. High-end imaging and image-processing solutions allow the community now to transcend conventional practices and benefit from continuously improving approaches. These promise to deliver a comprehensive, 3D view of plant nuclear architecture and to capture spatial dynamics of the nuclear compartment in relation to cellular states and responses. 3D and 4D: Three and Four dimensional; AI: Artificial Intelligence; ant: antipodal nuclei (ant); CLSM: Confocal Laser Scanning Microscopy; CTs: Chromosome Territories; DL: Deep Learning; DLIm: Dynamic Live Imaging; ecn: egg nucleus; FACS: Fluorescence-Activated Cell Sorting; FISH: Fluorescent In Situ Hybridization; FP: Fluorescent Proteins (GFP, RFP, CFP, YFP, mCherry); FRAP: Fluorescence Recovery After Photobleaching; GPU: Graphics Processing Unit; KEEs: KNOT Engaged Elements; INTACT: Isolation of Nuclei TAgged in specific Cell Types; LADs: Lamin-Associated Domains; ML: Machine Learning; NA: Numerical Aperture; NADs: Nucleolar Associated Domains; PALM: Photo-Activated Localization Microscopy; Pixel: Picture element; pn: polar nuclei; PSF: Point Spread Function; RHF: Relative Heterochromatin Fraction; SIM: Structured Illumination Microscopy; SLIm: Static Live Imaging; SMC: Spore Mother Cell; SNR: Signal to Noise Ratio; SRM: Super-Resolution Microscopy; STED: STimulated Emission Depletion; STORM: STochastic Optical Reconstruction Microscopy; syn: synergid nuclei; TADs: Topologically Associating Domains; Voxel: Volumetric pixel.
真核细胞的细胞核是一种中心细胞器,其结构决定了基因组在多个层面上的功能。破译影响细胞反应和特性的核组织原则是一个及时的挑战。尽管植物和动物细胞核有许多相似之处,但植物细胞核具有有趣的特异性。除了分子和生化方法外,3D 显微镜对于解析核结构也是必不可少的。然而,需要新的解决方案来捕捉特定于细胞的、亚核和动态过程。我们提供了一个利用高分辨率到超分辨率显微镜和图像处理技术以尽可能高的空间和时间分辨率以及在定量和细胞特异性水平上探测植物细胞核结构的指针。高端成像和图像处理解决方案使研究社区现在能够超越传统方法,并受益于不断改进的方法。这些方法有望提供植物细胞核结构的全面、3D 视图,并捕捉核区室与细胞状态和反应相关的空间动态。3D 和 4D:三维和四维;AI:人工智能;ant:对极核(ant);CLSM:共聚焦激光扫描显微镜;CTs:染色体区室;DL:深度学习;DLIm:动态活体成像;ecn:卵核;FACS:荧光激活细胞分选;FISH:荧光原位杂交;FP:荧光蛋白(GFP、RFP、CFP、YFP、mCherry);FRAP:荧光恢复后漂白;GPU:图形处理单元;KEEs:结结合元素;INTACT:在特定细胞类型中标记细胞核的分离;LADs:核纤层相关结构域;ML:机器学习;NA:数值孔径;NADs:核仁相关结构域;PALM:光激活定位显微镜;Pixel:像素;pn:极核;PSF:点扩散函数;RHF:相对异染色质分数;SIM:结构照明显微镜;SLIm:静态活体成像;SMC:孢子母细胞;SNR:信号噪声比;SRM:超分辨率显微镜;STED:受激发射损耗;STORM:随机光学重建显微镜;syn:合子核;TADs:拓扑关联区室;Voxel:体素。
Adv Exp Med Biol. 2018
Trends Plant Sci. 2015-10-5
Plant Physiol. 2025-3-28
Methods Mol Biol. 2025
Front Plant Sci. 2024-5-28
Commun Biol. 2023-3-31
Bio Protoc. 2017-4-20
Genome Biol. 2019-4-30
Curr Opin Plant Biol. 2019-4-28
Nat Methods. 2018-12-17
Nat Methods. 2018-11-26
BMC Bioinformatics. 2018-10-3
PLoS Biol. 2018-7-3