文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用显微镜方法探测植物细胞核的 3D 结构:挑战与解决方案。

Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and solutions.

机构信息

a Gregor Mendel Institute (GMI) of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC) , Vienna , Austria.

b Norwich Research Park, Earlham Institute , Norwich , UK.

出版信息

Nucleus. 2019 Dec;10(1):181-212. doi: 10.1080/19491034.2019.1644592.


DOI:10.1080/19491034.2019.1644592
PMID:31362571
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6682351/
Abstract

The eukaryotic cell nucleus is a central organelle whose architecture determines genome function at multiple levels. Deciphering nuclear organizing principles influencing cellular responses and identity is a timely challenge. Despite many similarities between plant and animal nuclei, plant nuclei present intriguing specificities. Complementary to molecular and biochemical approaches, 3D microscopy is indispensable for resolving nuclear architecture. However, novel solutions are required for capturing cell-specific, sub-nuclear and dynamic processes. We provide a pointer for utilising high-to-super-resolution microscopy and image processing to probe plant nuclear architecture in 3D at the best possible spatial and temporal resolution and at quantitative and cell-specific levels. High-end imaging and image-processing solutions allow the community now to transcend conventional practices and benefit from continuously improving approaches. These promise to deliver a comprehensive, 3D view of plant nuclear architecture and to capture spatial dynamics of the nuclear compartment in relation to cellular states and responses. 3D and 4D: Three and Four dimensional; AI: Artificial Intelligence; ant: antipodal nuclei (ant); CLSM: Confocal Laser Scanning Microscopy; CTs: Chromosome Territories; DL: Deep Learning; DLIm: Dynamic Live Imaging; ecn: egg nucleus; FACS: Fluorescence-Activated Cell Sorting; FISH: Fluorescent In Situ Hybridization; FP: Fluorescent Proteins (GFP, RFP, CFP, YFP, mCherry); FRAP: Fluorescence Recovery After Photobleaching; GPU: Graphics Processing Unit; KEEs: KNOT Engaged Elements; INTACT: Isolation of Nuclei TAgged in specific Cell Types; LADs: Lamin-Associated Domains; ML: Machine Learning; NA: Numerical Aperture; NADs: Nucleolar Associated Domains; PALM: Photo-Activated Localization Microscopy; Pixel: Picture element; pn: polar nuclei; PSF: Point Spread Function; RHF: Relative Heterochromatin Fraction; SIM: Structured Illumination Microscopy; SLIm: Static Live Imaging; SMC: Spore Mother Cell; SNR: Signal to Noise Ratio; SRM: Super-Resolution Microscopy; STED: STimulated Emission Depletion; STORM: STochastic Optical Reconstruction Microscopy; syn: synergid nuclei; TADs: Topologically Associating Domains; Voxel: Volumetric pixel.

摘要

真核细胞的细胞核是一种中心细胞器,其结构决定了基因组在多个层面上的功能。破译影响细胞反应和特性的核组织原则是一个及时的挑战。尽管植物和动物细胞核有许多相似之处,但植物细胞核具有有趣的特异性。除了分子和生化方法外,3D 显微镜对于解析核结构也是必不可少的。然而,需要新的解决方案来捕捉特定于细胞的、亚核和动态过程。我们提供了一个利用高分辨率到超分辨率显微镜和图像处理技术以尽可能高的空间和时间分辨率以及在定量和细胞特异性水平上探测植物细胞核结构的指针。高端成像和图像处理解决方案使研究社区现在能够超越传统方法,并受益于不断改进的方法。这些方法有望提供植物细胞核结构的全面、3D 视图,并捕捉核区室与细胞状态和反应相关的空间动态。3D 和 4D:三维和四维;AI:人工智能;ant:对极核(ant);CLSM:共聚焦激光扫描显微镜;CTs:染色体区室;DL:深度学习;DLIm:动态活体成像;ecn:卵核;FACS:荧光激活细胞分选;FISH:荧光原位杂交;FP:荧光蛋白(GFP、RFP、CFP、YFP、mCherry);FRAP:荧光恢复后漂白;GPU:图形处理单元;KEEs:结结合元素;INTACT:在特定细胞类型中标记细胞核的分离;LADs:核纤层相关结构域;ML:机器学习;NA:数值孔径;NADs:核仁相关结构域;PALM:光激活定位显微镜;Pixel:像素;pn:极核;PSF:点扩散函数;RHF:相对异染色质分数;SIM:结构照明显微镜;SLIm:静态活体成像;SMC:孢子母细胞;SNR:信号噪声比;SRM:超分辨率显微镜;STED:受激发射损耗;STORM:随机光学重建显微镜;syn:合子核;TADs:拓扑关联区室;Voxel:体素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/6682351/ed54ae3450f7/kncl-10-01-1644592-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/6682351/473648a1e62d/kncl-10-01-1644592-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/6682351/eb690266e4e6/kncl-10-01-1644592-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/6682351/cd0b14c82b41/kncl-10-01-1644592-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/6682351/f604279ac73e/kncl-10-01-1644592-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/6682351/369df9f8d106/kncl-10-01-1644592-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/6682351/ed54ae3450f7/kncl-10-01-1644592-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/6682351/473648a1e62d/kncl-10-01-1644592-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/6682351/eb690266e4e6/kncl-10-01-1644592-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/6682351/cd0b14c82b41/kncl-10-01-1644592-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/6682351/f604279ac73e/kncl-10-01-1644592-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/6682351/369df9f8d106/kncl-10-01-1644592-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/6682351/ed54ae3450f7/kncl-10-01-1644592-g006.jpg

相似文献

[1]
Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and solutions.

Nucleus. 2019-12

[2]
Image analysis workflows to reveal the spatial organization of cell nuclei and chromosomes.

Nucleus. 2022-12

[3]
Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images.

J Microsc. 2021-1

[4]
The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture.

Bioessays. 2012-5

[5]
Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods.

J Neurochem. 2015-11

[6]
Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy.

Methods Mol Biol. 2013

[7]
Super-Resolution Fluorescence Microscopy for Single Cell Imaging.

Adv Exp Med Biol. 2018

[8]
Near-field infrared nanospectroscopy and super-resolution fluorescence microscopy enable complementary nanoscale analyses of lymphocyte nuclei.

Analyst. 2018-12-3

[9]
Super-resolution Microscopy in Plant Cell Imaging.

Trends Plant Sci. 2015-10-5

[10]
Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture.

Crit Rev Eukaryot Gene Expr. 2000

引用本文的文献

[1]
SlimVar for rapid in vivo single-molecule tracking of chromatin regulators in plants.

Nat Commun. 2025-9-1

[2]
Translocation of Foliar-Applied Nanoparticles: A Critical Review From a Plant Science Perspective.

Physiol Plant. 2025

[3]
Heat stress response and transposon control in plant shoot stem cells.

Plant Physiol. 2025-3-28

[4]
3D STED Imaging of Isolated Arabidopsis thaliana Nuclei.

Methods Mol Biol. 2025

[5]
Microfluidics to Follow Spatiotemporal Dynamics at the Nucleo-Cytoplasmic Interface During Plant Root Growth.

Methods Mol Biol. 2025

[6]
Connecting high-resolution 3D chromatin maps with cell division and cell differentiation at the root apical meristem.

Plant Cell Rep. 2024-9-16

[7]
Insight into chromatin compaction and spatial organization in rice interphase nuclei.

Front Plant Sci. 2024-5-28

[8]
Use of Super-Resolution Live Cell Imaging to Distinguish Endoplasmic Reticulum: Nuclear Envelope Subcellular Localization.

Methods Mol Biol. 2024

[9]
Optical imaging of the small intestine immune compartment across scales.

Commun Biol. 2023-3-31

[10]
Novel whole-mount FISH analysis for intact root of Arabidopsis thaliana with spatial reference to 3D visualization.

J Plant Res. 2023-5

本文引用的文献

[1]
Single Molecule RNA FISH in Root Cells.

Bio Protoc. 2017-4-20

[2]
Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery.

Genome Biol. 2019-4-30

[3]
3D genome organization: a role for phase separation and loop extrusion?

Curr Opin Plant Biol. 2019-4-28

[4]
Tissue-specific Hi-C analyses of rice, foxtail millet and maize suggest non-canonical function of plant chromatin domains.

J Integr Plant Biol. 2019-5-22

[5]
Deep learning enables cross-modality super-resolution in fluorescence microscopy.

Nat Methods. 2018-12-17

[6]
Content-aware image restoration: pushing the limits of fluorescence microscopy.

Nat Methods. 2018-11-26

[7]
Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities.

Inf Fusion. 2019-10

[8]
A deep learning-based algorithm for 2-D cell segmentation in microscopy images.

BMC Bioinformatics. 2018-10-3

[9]
TOPII and chromosome movement help remove interlocks between entangled chromosomes during meiosis.

J Cell Biol. 2018-9-28

[10]
CellProfiler 3.0: Next-generation image processing for biology.

PLoS Biol. 2018-7-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索