Yu Xie-Hang, Cirac J Ignacio, Kos Pavel, Styliaris Georgios
<a href="https://ror.org/01vekys64">Max-Planck-Institut für Quantenoptik</a>, Hans-Kopfermann-Str. 1, 85748 Garching, Germany and <a href="https://ror.org/04xrcta15">Munich Center for Quantum Science and Technology (MCQST)</a>, Schellingstr. 4, 80799 München, Germany.
Phys Rev Lett. 2024 Nov 8;133(19):190401. doi: 10.1103/PhysRevLett.133.190401.
Efficient characterization of higher dimensional many-body physical states presents significant challenges. In this Letter, we propose a new class of projected entangled pair states (PEPS) that incorporates two isometric conditions. This new class facilitates the efficient calculation of general local observables and certain two-point correlation functions, which have been previously shown to be intractable for general PEPS, or PEPS with only a single isometric constraint. Despite incorporating two isometric conditions, our class preserves the rich physical structure while enhancing the analytical capabilities. It features a large set of tunable parameters, with only a subleading correction compared to that of general PEPS. Furthermore, we analytically demonstrate that this class can encode universal quantum computation and can represent a transition from topological to trivial order.
对高维多体物理态进行高效表征面临重大挑战。在本信函中,我们提出了一类新的投影纠缠对态(PEPS),它纳入了两个等距条件。这类新的态便于对一般的局域可观测量和某些两点关联函数进行高效计算,而之前已表明对于一般的PEPS或仅具有单个等距约束的PEPS而言,这些计算是难以处理的。尽管纳入了两个等距条件,但我们的这类态在增强分析能力的同时保留了丰富的物理结构。它具有大量可调参数,与一般PEPS相比只有次主导修正。此外,我们通过分析证明,这类态可以编码通用量子计算,并且可以表示从拓扑序到平凡序的转变。