Suppr超能文献

利用位置几何结构进行避碰的神经机制。

Neural mechanisms to exploit positional geometry for collision avoidance.

机构信息

Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.

Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA.

出版信息

Curr Biol. 2022 Jun 6;32(11):2357-2374.e6. doi: 10.1016/j.cub.2022.04.023. Epub 2022 May 3.

Abstract

Visual motion provides rich geometrical cues about the three-dimensional configuration of the world. However, how brains decode the spatial information carried by motion signals remains poorly understood. Here, we study a collision-avoidance behavior in Drosophila as a simple model of motion-based spatial vision. With simulations and psychophysics, we demonstrate that walking Drosophila exhibit a pattern of slowing to avoid collisions by exploiting the geometry of positional changes of objects on near-collision courses. This behavior requires the visual neuron LPLC1, whose tuning mirrors the behavior and whose activity drives slowing. LPLC1 pools inputs from object and motion detectors, and spatially biased inhibition tunes it to the geometry of collisions. Connectomic analyses identified circuitry downstream of LPLC1 that faithfully inherits its response properties. Overall, our results reveal how a small neural circuit solves a specific spatial vision task by combining distinct visual features to exploit universal geometrical constraints of the visual world.

摘要

视觉运动为世界的三维结构提供了丰富的几何线索。然而,大脑如何解码运动信号所携带的空间信息仍知之甚少。在这里,我们以果蝇的避碰行为作为基于运动的空间视觉的简单模型进行研究。通过模拟和心理物理学实验,我们证明,在接近碰撞的过程中,果蝇通过利用物体位置变化的几何形状来减缓速度以避免碰撞。这种行为需要视觉神经元 LPLC1,其调谐反映了这种行为,并且其活动会驱动减速。LPLC1 汇聚了来自物体和运动探测器的输入,空间偏向性抑制将其调谐到碰撞的几何形状。连接组学分析确定了 LPLC1 下游的电路,该电路忠实地继承了其响应特性。总的来说,我们的研究结果揭示了一个小的神经回路如何通过结合不同的视觉特征来利用视觉世界的通用几何约束,从而解决特定的空间视觉任务。

相似文献

1
Neural mechanisms to exploit positional geometry for collision avoidance.利用位置几何结构进行避碰的神经机制。
Curr Biol. 2022 Jun 6;32(11):2357-2374.e6. doi: 10.1016/j.cub.2022.04.023. Epub 2022 May 3.
2
A functionally ordered visual feature map in the Drosophila brain.果蝇大脑中具有功能有序的视觉特征图。
Neuron. 2022 May 18;110(10):1700-1711.e6. doi: 10.1016/j.neuron.2022.02.013. Epub 2022 Mar 14.
3
How Flies See Motion.苍蝇如何感知运动
Annu Rev Neurosci. 2023 Jul 10;46:17-37. doi: 10.1146/annurev-neuro-080422-111929.

引用本文的文献

3
Adaptation to visual sparsity enhances responses to isolated stimuli.对视觉稀疏性的适应增强了对孤立刺激的反应。
Curr Biol. 2024 Dec 16;34(24):5697-5713.e8. doi: 10.1016/j.cub.2024.10.053. Epub 2024 Nov 21.
6
Long-term neuropeptide modulation of female sexual drive via the TRP channel in .通过 TRP 通道对雌性性欲进行长期神经肽调节。
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2310841121. doi: 10.1073/pnas.2310841121. Epub 2024 Feb 27.
10
Bioinspired figure-ground discrimination via visual motion smoothing.通过视觉运动平滑实现仿生的图形-背景区分。
PLoS Comput Biol. 2023 Apr 21;19(4):e1011077. doi: 10.1371/journal.pcbi.1011077. eCollection 2023 Apr.

本文引用的文献

1
Print: An open access tool for EM connectomics.Print:一种用于电子显微镜连接组学的开放获取工具。
Front Neuroinform. 2022 Jul 20;16:896292. doi: 10.3389/fninf.2022.896292. eCollection 2022.
2
Neuronal circuits integrating visual motion information in Drosophila melanogaster.果蝇中整合视觉运动信息的神经元回路。
Curr Biol. 2022 Aug 22;32(16):3529-3544.e2. doi: 10.1016/j.cub.2022.06.061. Epub 2022 Jul 14.
10
Functional Architecture of Motion Direction in the Mouse Superior Colliculus.小鼠上丘运动方向的功能结构。
Curr Biol. 2020 Sep 7;30(17):3304-3315.e4. doi: 10.1016/j.cub.2020.06.023. Epub 2020 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验