Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.
Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA.
Curr Biol. 2022 Jun 6;32(11):2357-2374.e6. doi: 10.1016/j.cub.2022.04.023. Epub 2022 May 3.
Visual motion provides rich geometrical cues about the three-dimensional configuration of the world. However, how brains decode the spatial information carried by motion signals remains poorly understood. Here, we study a collision-avoidance behavior in Drosophila as a simple model of motion-based spatial vision. With simulations and psychophysics, we demonstrate that walking Drosophila exhibit a pattern of slowing to avoid collisions by exploiting the geometry of positional changes of objects on near-collision courses. This behavior requires the visual neuron LPLC1, whose tuning mirrors the behavior and whose activity drives slowing. LPLC1 pools inputs from object and motion detectors, and spatially biased inhibition tunes it to the geometry of collisions. Connectomic analyses identified circuitry downstream of LPLC1 that faithfully inherits its response properties. Overall, our results reveal how a small neural circuit solves a specific spatial vision task by combining distinct visual features to exploit universal geometrical constraints of the visual world.
视觉运动为世界的三维结构提供了丰富的几何线索。然而,大脑如何解码运动信号所携带的空间信息仍知之甚少。在这里,我们以果蝇的避碰行为作为基于运动的空间视觉的简单模型进行研究。通过模拟和心理物理学实验,我们证明,在接近碰撞的过程中,果蝇通过利用物体位置变化的几何形状来减缓速度以避免碰撞。这种行为需要视觉神经元 LPLC1,其调谐反映了这种行为,并且其活动会驱动减速。LPLC1 汇聚了来自物体和运动探测器的输入,空间偏向性抑制将其调谐到碰撞的几何形状。连接组学分析确定了 LPLC1 下游的电路,该电路忠实地继承了其响应特性。总的来说,我们的研究结果揭示了一个小的神经回路如何通过结合不同的视觉特征来利用视觉世界的通用几何约束,从而解决特定的空间视觉任务。