Fitzgerald James E, Clark Damon A
Center for Brain Science, Harvard University, Cambridge, United States.
Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.
Elife. 2015 Oct 24;4:e09123. doi: 10.7554/eLife.09123.
Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator.
许多动物利用视觉信号来估计运动。传统模型认为,动物通过对时空分离的视觉信号对进行互相关来估计运动,但最近的实验表明,人类和苍蝇能从表示自然环境中运动的高阶相关性中感知运动。在这里,我们展示了神经回路中具有生物学合理性的处理模式如何能够被调整以提取这些信息。我们强调果蝇视觉回路的已知方面如何能够体现这种调整并预测果蝇行为。我们发现,将运动信号分离到开/关通道中可以通过考虑自然光/暗不对称性来提高估计准确性。此外,运动检测神经元的多种输入可以提供对更复杂的高阶相关性的访问。总体而言,这些结果说明了非传统计算如何利用自然主义输入来改善运动估计。这表明,果蝇在其复杂回路中实现的运动计算的复杂性代表了其视觉运动估计器的一个有价值的特征。