Shanghai Jiao Tong University, Shanghai, China.
Shanghai Artificial Intelligence Laboratory, Shanghai, China.
Nat Commun. 2024 Nov 22;15(1):10147. doi: 10.1038/s41467-024-54424-6.
Developing a generalist radiology diagnosis system can greatly enhance clinical diagnostics. In this paper, we introduce RadDiag, a foundational model supporting 2D and 3D inputs across various modalities and anatomies, using a transformer-based fusion module for comprehensive disease diagnosis. Due to patient privacy concerns and the lack of large-scale radiology diagnosis datasets, we utilize high-quality, clinician-reviewed radiological images available online with diagnosis labels. Our dataset, RP3D-DiagDS, contains 40,936 cases with 195,010 scans covering 5568 disorders (930 unique ICD-10-CM codes). Experimentally, our RadDiag achieves 95.14% AUC on internal evaluation with the knowledge-enhancement strategy. Additionally, RadDiag can be zero-shot applied or fine-tuned to external diagnosis datasets sourced from various medical centers, demonstrating state-of-the-art results. In conclusion, we show that publicly shared medical data on the Internet is a tremendous and valuable resource that can potentially support building strong models for image understanding in healthcare.
开发通用放射诊断系统可以极大地提高临床诊断水平。在本文中,我们介绍了 RadDiag,这是一个基础模型,支持 2D 和 3D 输入,涵盖各种模态和解剖结构,使用基于转换器的融合模块进行全面的疾病诊断。由于患者隐私问题和缺乏大规模放射诊断数据集,我们利用在线提供的高质量、经过临床医生审查的放射图像,并附有诊断标签。我们的数据集 RP3D-DiagDS 包含 40936 个病例,195010 个扫描,涵盖 5568 种疾病(930 个独特的 ICD-10-CM 代码)。在实验中,我们的 RadDiag 在具有知识增强策略的内部评估中达到了 95.14%的 AUC。此外,RadDiag 可以零样本应用或微调来自不同医疗中心的外部诊断数据集,展示了最先进的结果。总之,我们表明互联网上共享的公共医疗数据是一个巨大而有价值的资源,它有可能支持在医疗保健领域构建强大的图像理解模型。