Mei Xueyan, Liu Zelong, Robson Philip M, Marinelli Brett, Huang Mingqian, Doshi Amish, Jacobi Adam, Cao Chendi, Link Katherine E, Yang Thomas, Wang Ying, Greenspan Hayit, Deyer Timothy, Fayad Zahi A, Yang Yang
BioMedical Engineering and Imaging Institute (X.M., Z.L., P.M.R., C.C., K.E.L., T.Y., H.G., Z.A.F., Y.Y.) and Department of Diagnostic, Interventional and Molecular Radiology (P.M.R., B.M., M.H., A.D., A.J., Z.A.F., Y.Y.), Icahn School of Medicine at Mount Sinai, Leon and Norma Hess Center for Science and Medicine, 1470 Madison Ave, New York, NY 10029; Department of Mathematics, University of Oklahoma, Norman, Okla (Y.W.); Department of Radiology, Cornell Medicine, New York, NY (T.D.); and Department of Radiology, East River Medical Imaging, New York, NY (T.D.).
Radiol Artif Intell. 2022 Jul 27;4(5):e210315. doi: 10.1148/ryai.210315. eCollection 2022 Sep.
To demonstrate the value of pretraining with millions of radiologic images compared with ImageNet photographic images on downstream medical applications when using transfer learning.
This retrospective study included patients who underwent a radiologic study between 2005 and 2020 at an outpatient imaging facility. Key images and associated labels from the studies were retrospectively extracted from the original study interpretation. These images were used for RadImageNet model training with random weight initiation. The RadImageNet models were compared with ImageNet models using the area under the receiver operating characteristic curve (AUC) for eight classification tasks and using Dice scores for two segmentation problems.
The RadImageNet database consists of 1.35 million annotated medical images in 131 872 patients who underwent CT, MRI, and US for musculoskeletal, neurologic, oncologic, gastrointestinal, endocrine, abdominal, and pulmonary pathologic conditions. For transfer learning tasks on small datasets-thyroid nodules (US), breast masses (US), anterior cruciate ligament injuries (MRI), and meniscal tears (MRI)-the RadImageNet models demonstrated a significant advantage ( < .001) to ImageNet models (9.4%, 4.0%, 4.8%, and 4.5% AUC improvements, respectively). For larger datasets-pneumonia (chest radiography), COVID-19 (CT), SARS-CoV-2 (CT), and intracranial hemorrhage (CT)-the RadImageNet models also illustrated improved AUC ( < .001) by 1.9%, 6.1%, 1.7%, and 0.9%, respectively. Additionally, lesion localizations of the RadImageNet models were improved by 64.6% and 16.4% on thyroid and breast US datasets, respectively.
RadImageNet pretrained models demonstrated better interpretability compared with ImageNet models, especially for smaller radiologic datasets. CT, MR Imaging, US, Head/Neck, Thorax, Brain/Brain Stem, Evidence-based Medicine, Computer Applications-General (Informatics) Published under a CC BY 4.0 license.See also the commentary by Cadrin-Chênevert in this issue.
在使用迁移学习时,证明与使用ImageNet摄影图像相比,用数百万张放射图像进行预训练在下游医学应用中的价值。
这项回顾性研究纳入了2�05年至2�20年间在门诊影像机构接受放射学检查的患者。研究中的关键图像及相关标签是从原始研究解读中回顾性提取的。这些图像用于随机权重初始化的RadImageNet模型训练。使用受试者工作特征曲线下面积(AUC)对八个分类任务以及使用Dice分数对两个分割问题,将RadImageNet模型与ImageNet模型进行比较。
RadImageNet数据库由131872例患者的135万张标注医学图像组成,这些患者因肌肉骨骼、神经、肿瘤、胃肠、内分泌、腹部和肺部病理状况接受了CT、MRI和超声检查。对于小数据集上的迁移学习任务——甲状腺结节(超声)、乳腺肿块(超声)、前交叉韧带损伤(MRI)和半月板撕裂(MRI)——RadImageNet模型相对于ImageNet模型显示出显著优势(P<0.001)(AUC分别提高9.4%、4.0%、4.8%和4.5%)。对于较大数据集——肺炎(胸部X线摄影)、COVID-19(CT)、SARS-CoV-2(CT)和颅内出血(CT)——RadImageNet模型的AUC也分别提高了1.9%、6.1%、1.7%和0.9%(P<0.001)。此外,在甲状腺和乳腺超声数据集上,RadImageNet模型的病变定位分别提高了64.6%和16.4%。
与ImageNet模型相比,RadImageNet预训练模型表现出更好的可解释性,尤其是对于较小的放射学数据集。CT、MR成像、超声、头颈、胸部、脑/脑干、循证医学、计算机应用-一般(信息学) 根据知识共享署名4.0许可发布。另见本期Cadrin-Chênevert的评论。