Zhang Yujie, Bai Lu, Wang Xin, Zhao Yuchen, Zhang Tianlei, Ye Lichen, Du Xufei, Zhang Zhe, Du Jiulin, Wang Kai
Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
University of Chinese Academy of Sciences, Beijing, China.
Nat Methods. 2025 Jan;22(1):177-186. doi: 10.1038/s41592-024-02535-9. Epub 2024 Nov 22.
Neurons are best studied in their native states in which their functional and morphological dynamics support animals' natural behaviors. Super-resolution microscopy can potentially reveal these dynamics in higher details but has been challenging in behaving animals due to severe motion artifacts. Here we report multiplexed, line-scanning, structured illumination microscopy, which can tolerate motion of up to 50 μm s while achieving 150-nm and 100-nm lateral resolutions in its linear and nonlinear forms, respectively. We continuously imaged the dynamics of spinules in dendritic spines and axonal boutons volumetrically over thousands of frames and tens of minutes in head-fixed mouse brains during sleep-wake cycles. Super-resolution imaging of axonal boutons revealed spinule dynamics on a scale of seconds. Simultaneous two-color imaging further enabled analyses of the spatial distributions of diverse PSD-95 clusters and opened up possibilities to study their correlations with the structural dynamics of dendrites in the brains of head-fixed awake mice.
神经元在其原生状态下得到了最好的研究,在这种状态下,它们的功能和形态动力学支持动物的自然行为。超分辨率显微镜有可能更详细地揭示这些动力学,但由于严重的运动伪影,在活动的动物身上进行观察一直具有挑战性。在此,我们报告了多路复用、线扫描、结构照明显微镜技术,该技术能够容忍高达50μm/s的运动,同时在其线性和非线性形式下分别实现150nm和100nm的横向分辨率。我们在睡眠-觉醒周期中,对头固定的小鼠大脑进行了数千帧、长达数十分钟的连续成像,以三维方式观察树突棘和轴突终扣中棘状小体的动力学。轴突终扣的超分辨率成像揭示了棘状小体在秒级尺度上的动力学。同时进行的双色成像进一步能够分析不同PSD-95簇的空间分布,并为研究它们与头固定清醒小鼠大脑中树突结构动力学的相关性开辟了可能性。