Urban Ben E, Xiao Lei, Dong Biqin, Chen Siyu, Kozorovitskiy Yevgenia, Zhang Hao F
Department of Biomedical Engineering, Northwestern University, Evanston, Illinois.
Department of Neurobiology, Northwestern University, Evanston, Illinois.
J Biophotonics. 2018 Mar;11(3). doi: 10.1002/jbio.201700171. Epub 2017 Nov 9.
Visualizing fine neuronal structures deep inside strongly light-scattering brain tissue remains a challenge in neuroscience. Recent nanoscopy techniques have reached the necessary resolution but often suffer from limited imaging depth, long imaging time or high light fluence requirements. Here, we present two-photon super-resolution patterned excitation reconstruction (2P-SuPER) microscopy for 3-dimensional imaging of dendritic spine dynamics at a maximum demonstrated imaging depth of 130 μm in living brain tissue with approximately 100 nm spatial resolution. We confirmed 2P-SuPER resolution using fluorescence nanoparticle and quantum dot phantoms and imaged spiny neurons in acute brain slices. We induced hippocampal plasticity and showed that 2P-SuPER can resolve increases in dendritic spine head sizes on CA1 pyramidal neurons following theta-burst stimulation of Schaffer collateral axons. 2P-SuPER further revealed nanoscopic increases in dendritic spine neck widths, a feature of synaptic plasticity that has not been thoroughly investigated due to the combined limit of resolution and penetration depth in existing imaging technologies.
在神经科学领域,可视化强光散射脑组织深处的精细神经元结构仍然是一项挑战。最近的纳米显微镜技术已达到所需分辨率,但常常受到成像深度有限、成像时间长或高光通量要求的困扰。在此,我们展示了双光子超分辨率图案激发重建(2P-SuPER)显微镜,用于在活脑组织中对树突棘动力学进行三维成像,最大成像深度达130μm,空间分辨率约为100nm。我们使用荧光纳米颗粒和量子点模型证实了2P-SuPER的分辨率,并对急性脑切片中的有棘神经元进行了成像。我们诱导了海马可塑性,并表明2P-SuPER可以分辨在对海马体联合轴突进行θ波爆发刺激后,CA1锥体神经元上树突棘头部大小的增加。2P-SuPER进一步揭示了树突棘颈部宽度的纳米级增加,这是一种突触可塑性特征,由于现有成像技术在分辨率和穿透深度方面的综合限制,尚未得到充分研究。