Suppr超能文献

使用双光子超分辨率图案激发重建显微镜对神经元结构动力学进行成像。

Imaging neuronal structure dynamics using 2-photon super-resolution patterned excitation reconstruction microscopy.

作者信息

Urban Ben E, Xiao Lei, Dong Biqin, Chen Siyu, Kozorovitskiy Yevgenia, Zhang Hao F

机构信息

Department of Biomedical Engineering, Northwestern University, Evanston, Illinois.

Department of Neurobiology, Northwestern University, Evanston, Illinois.

出版信息

J Biophotonics. 2018 Mar;11(3). doi: 10.1002/jbio.201700171. Epub 2017 Nov 9.

Abstract

Visualizing fine neuronal structures deep inside strongly light-scattering brain tissue remains a challenge in neuroscience. Recent nanoscopy techniques have reached the necessary resolution but often suffer from limited imaging depth, long imaging time or high light fluence requirements. Here, we present two-photon super-resolution patterned excitation reconstruction (2P-SuPER) microscopy for 3-dimensional imaging of dendritic spine dynamics at a maximum demonstrated imaging depth of 130 μm in living brain tissue with approximately 100 nm spatial resolution. We confirmed 2P-SuPER resolution using fluorescence nanoparticle and quantum dot phantoms and imaged spiny neurons in acute brain slices. We induced hippocampal plasticity and showed that 2P-SuPER can resolve increases in dendritic spine head sizes on CA1 pyramidal neurons following theta-burst stimulation of Schaffer collateral axons. 2P-SuPER further revealed nanoscopic increases in dendritic spine neck widths, a feature of synaptic plasticity that has not been thoroughly investigated due to the combined limit of resolution and penetration depth in existing imaging technologies.

摘要

在神经科学领域,可视化强光散射脑组织深处的精细神经元结构仍然是一项挑战。最近的纳米显微镜技术已达到所需分辨率,但常常受到成像深度有限、成像时间长或高光通量要求的困扰。在此,我们展示了双光子超分辨率图案激发重建(2P-SuPER)显微镜,用于在活脑组织中对树突棘动力学进行三维成像,最大成像深度达130μm,空间分辨率约为100nm。我们使用荧光纳米颗粒和量子点模型证实了2P-SuPER的分辨率,并对急性脑切片中的有棘神经元进行了成像。我们诱导了海马可塑性,并表明2P-SuPER可以分辨在对海马体联合轴突进行θ波爆发刺激后,CA1锥体神经元上树突棘头部大小的增加。2P-SuPER进一步揭示了树突棘颈部宽度的纳米级增加,这是一种突触可塑性特征,由于现有成像技术在分辨率和穿透深度方面的综合限制,尚未得到充分研究。

相似文献

引用本文的文献

2
Quantum Dots for Improved Single-Molecule Localization Microscopy.量子点用于改进单分子定位显微镜。
J Phys Chem B. 2021 Mar 18;125(10):2566-2576. doi: 10.1021/acs.jpcb.0c11545. Epub 2021 Mar 8.
3
Advances in Nanomaterials for Brain Microscopy.用于脑显微镜检查的纳米材料进展
Nano Res. 2018 Oct;11(10):5144-5172. doi: 10.1007/s12274-018-2145-2. Epub 2018 Aug 8.

本文引用的文献

1
Biochemical Computation for Spine Structural Plasticity.脊柱结构可塑性的生化计算
Neuron. 2015 Jul 1;87(1):63-75. doi: 10.1016/j.neuron.2015.05.043.
2
Super-resolution two-photon microscopy via scanning patterned illumination.通过扫描图案照明实现超分辨率双光子显微镜。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042703. doi: 10.1103/PhysRevE.91.042703. Epub 2015 Apr 7.
6
Activity-dependent dendritic spine neck changes are correlated with synaptic strength.活性依赖的树突棘颈变化与突触强度相关。
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):E2895-904. doi: 10.1073/pnas.1321869111. Epub 2014 Jun 30.
10
Spine neck plasticity regulates compartmentalization of synapses.脊柱颈段可塑性调节突触的分区。
Nat Neurosci. 2014 May;17(5):678-85. doi: 10.1038/nn.3682. Epub 2014 Mar 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验