Xu Jiatong, Wan Jingting, Huang Hsi-Yuan, Chen Yigang, Huang Yixian, Huang Junyang, Zhang Ziyue, Su Chang, Zhou Yuming, Lin Xingqiao, Lin Yang-Chi-Dung, Huang Hsien-Da
School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China.
Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China.
Nucleic Acids Res. 2025 Jan 6;53(D1):D138-D146. doi: 10.1093/nar/gkae1086.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding to the 3'-untranslated regions of target mRNAs, influencing various biological processes at the post-transcriptional level. Identifying miRNA transcription start sites (TSSs) and transcription factors' (TFs) regulatory roles is crucial for elucidating miRNA function and transcriptional regulation. miRStart 2.0 integrates over 4500 high-throughput datasets across five data types, utilizing a multi-modal approach to annotate 28 828 putative TSSs for 1745 human and 1181 mouse miRNAs, supported by sequencing-based signals. Over 6 million tissue-specific TF-miRNA interactions, integrated from ChIP-seq data, are supplemented by DNase hypersensitivity and UCSC conservation data, with network visualizations. Our deep learning-based model outperforms existing tools in miRNA TSS prediction, achieving the most overlaps with both cell-specific and non-cell-specific validated TSSs. The user-friendly web interface and visualization tools make miRStart 2.0 easily accessible to researchers, enabling efficient identification of miRNA upstream regulatory elements in relation to their TSSs. This updated database provides systems-level insights into gene regulation and disease mechanisms, offering a valuable resource for translational research, facilitating the discovery of novel therapeutic targets and precision medicine strategies. miRStart 2.0 is now accessible at https://awi.cuhk.edu.cn/∼miRStart2.
微小RNA(miRNA)是一类小的非编码RNA,通过与靶mRNA的3'非翻译区结合来调节基因表达,在转录后水平影响各种生物学过程。识别miRNA转录起始位点(TSS)和转录因子(TF)的调控作用对于阐明miRNA功能和转录调控至关重要。miRStart 2.0整合了五种数据类型的4500多个高通量数据集,采用多模态方法注释了1745个人类和1181个小鼠miRNA的28828个推定TSS,并得到基于测序信号的支持。从ChIP-seq数据整合的超过600万个组织特异性TF-miRNA相互作用,通过DNase超敏反应和UCSC保守数据以及网络可视化进行补充。我们基于深度学习的模型在miRNA TSS预测方面优于现有工具,与细胞特异性和非细胞特异性验证的TSS的重叠最多。用户友好的网络界面和可视化工具使研究人员能够轻松访问miRStart 2.0,从而能够高效识别与miRNA TSS相关的上游调控元件。这个更新的数据库提供了基因调控和疾病机制的系统层面见解,为转化研究提供了宝贵资源,有助于发现新的治疗靶点和精准医学策略。现在可通过https://awi.cuhk.edu.cn/∼miRStart2访问miRStart 2.0。