Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
BMC Genomics. 2024 Nov 22;25(1):1129. doi: 10.1186/s12864-024-11023-5.
Charcoal rot of soybean is caused by the hemibiotrophic fungus Macrophomina phaseolina, a global crop destroyer and an important pathogen in the midwestern USA. The quantitative nature of host resistance and the complexity of the soybean-M. phaseolina interaction at the molecular level have hampered resistance breeding. A previous study showed that L-ascorbic acid (LAA) pre-treatment before M. phaseolina inoculation reduced charcoal rot lesion length in excised soybean stems. This study aimed to elucidate the genetic underpinnings of M. phaseolina-induced senescence and the mitigating effects of ascorbic acid on this physiological process within the same pathosystem.
RNA was sequenced from M. phaseolina-resistant and -susceptible soybean genotypes following M. phaseolina inoculation, LAA, and hydrogen peroxide (HO)-an oxidative stress inducer-application followed by inoculation. More genes were down-regulated in the resistant and susceptible genotypes than up-regulated when the M. phaseolina-inoculated treatments were compared to mock-inoculated control treatments. Gene ontology (GO) term and KEGG pathways analysis detected M. phaseolina-induced up-regulation of receptor-like kinase genes. In contrast, many genes related to antioxidants, defense, and hormonal pathways were down-regulated in both genotypes. LAA pre-treatment induced genes related to photosynthesis and reactive oxygen species responses in both genotypes. HO pre-treatment following inoculation up-regulated many stress-response genes, while hormone signal transduction and photosynthesis-related genes were down-regulated in both genotypes.
Results revealed transcriptional variation and genes associated with M. phaseolina-induced senescence in soybean. Ascorbic acid induced many photosynthetic genes, suggesting a complex regulation of defense and immunity in the plant against the hemibiotroph. Soybean plants also exhibited enhanced stress responsiveness when treated with HO followed by inoculation with M. phaseolina. This study will broaden more research avenues related to transcriptional regulation during the M. phaseolina-soybean interaction and the potential role of receptor-like kinases, oxidative stress-responsive genes, ethylene-mediated signaling and enhanced photosynthetic gene expression when mounting host resistance to this important soybean pathogen.
大豆炭腐病是由半活体真菌 Macrophomina phaseolina 引起的,它是一种全球性的作物破坏者,也是美国中西部地区的一种重要病原体。宿主抗性的定量性质和大豆-M. phaseolina 相互作用在分子水平上的复杂性阻碍了抗性育种。先前的研究表明,在接种 M. phaseolina 之前用 L-抗坏血酸(LAA)预处理可减少切除的大豆茎中炭腐病病变的长度。本研究旨在阐明 M. phaseolina 诱导衰老的遗传基础,以及在同一病理系统中抗坏血酸对这一生理过程的缓解作用。
在接种 M. phaseolina、LAA 和过氧化氢(HO)-一种氧化应激诱导剂-接种后,对 M. phaseolina 抗性和敏感性大豆基因型进行了 RNA 测序。与模拟接种对照处理相比,接种处理中抗性和敏感性基因型下调的基因多于上调的基因。GO 术语和 KEGG 途径分析检测到 M. phaseolina 诱导受体样激酶基因的上调。相比之下,两种基因型中与抗氧化剂、防御和激素途径相关的许多基因都下调了。LAA 预处理诱导两种基因型中与光合作用和活性氧反应相关的基因。HO 预处理后接种诱导许多应激反应基因,而两种基因型中激素信号转导和光合作用相关基因下调。
结果揭示了大豆中与 M. phaseolina 诱导衰老相关的转录变化和基因。抗坏血酸诱导许多光合作用基因,表明植物对这种重要的大豆病原体具有防御和免疫的复杂调节。用 HO 处理后再接种 M. phaseolina 也会增强大豆的应激反应。本研究将拓宽与 M. phaseolina-大豆相互作用过程中的转录调控以及受体样激酶、氧化应激反应基因、乙烯介导的信号转导和增强光合作用基因表达在宿主抵抗这种重要的大豆病原体中的潜在作用相关的更多研究途径。