Suppr超能文献

工程耐寒性:实施基因编辑工具提高植物抗寒能力。

Engineering cold resilience: implementing gene editing tools for plant cold stress tolerance.

机构信息

Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.

出版信息

Planta. 2024 Nov 23;261(1):2. doi: 10.1007/s00425-024-04578-w.

Abstract

This paper highlights the need for innovative approaches to enhance cold tolerance. It underscores how genome-editing tools can deepen our understanding of genes involved in cold stress. Cold stress is a significant abiotic factor in high-altitude regions, adversely affecting plant growth and limiting crop productivity. Plants have evolved various mechanisms in response to low temperatures that enable resistance at both physiological and molecular levels during chilling and freezing stress. Several cold-inducible genes have been isolated and characterized, with most playing key roles in providing tolerance against low-temperature stress. However, many plants fail to survive at low temperatures due to the absence of cold acclimatization mechanisms. Conventional breeding techniques, such as inter-specific or inter-genic hybridization, have had limited effectiveness in enhancing the cold resistance of essential crops. Thus, it is crucial to develop crops with improved adaptability, high yields and resistance to cold stress using advanced genomic approaches. The current availability of gene editing tools offers the opportunity to introduce targeted modifications in plant genomes efficiently, thereby developing cold-tolerant varieties. This review discusses advancements in gene editing tools, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)/Cas12a(Cpf1), prime editing (PE) and retron library recombineering (RLR). We focus specifically on the CRISPR/Cas system, which has garnered significant attention in recent years as a groundbreaking tool for genome editing across various species. These techniques will enhance our understanding of molecular interactions under low-temperature stress response and highlight the progress of genome editing in designing future climate-resilient crops.

摘要

本文强调了需要创新方法来提高耐寒性。它强调了基因组编辑工具如何加深我们对参与冷应激的基因的理解。冷应激是高海拔地区的一个重要非生物因素,对植物生长和限制作物生产力有不利影响。植物已经进化出各种机制来应对低温,在冷却和冷冻应激时,在生理和分子水平上都能抵抗。已经分离和鉴定了几种冷诱导基因,其中大多数在提供对低温胁迫的耐受性方面发挥关键作用。然而,由于缺乏冷驯化机制,许多植物无法在低温下存活。传统的育种技术,如种间或种内杂交,在提高重要作物的抗寒性方面效果有限。因此,利用先进的基因组方法开发具有改良适应性、高产量和抗冷性的作物至关重要。目前基因编辑工具的可用性提供了高效引入植物基因组靶向修饰的机会,从而开发出耐寒品种。本综述讨论了基因编辑工具的进展,包括锌指核酸酶(ZFNs)、转录激活因子样效应物核酸酶(TALENs)、成簇规律间隔短回文重复(CRISPR)/CRISPR 相关蛋白 9(Cas9)/Cas12a(Cpf1)、Prime 编辑(PE)和转座子文库重组(RLR)。我们特别关注 CRISPR/Cas 系统,该系统近年来作为一种在多种物种中进行基因组编辑的突破性工具引起了广泛关注。这些技术将增强我们对低温胁迫响应下分子相互作用的理解,并突出基因组编辑在设计未来适应气候变化的作物方面的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验