Liza Afroza Akter, Wang Shihao, Zhu Yanchen, Wu Hao, Guo Lukuan, Qi Yungeng, Zhang Fengshan, Song Junlong, Ren Hao, Guo Jiaqi
Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
Int J Biol Macromol. 2024 Dec;283(Pt 4):137973. doi: 10.1016/j.ijbiomac.2024.137973. Epub 2024 Nov 23.
This study aimed to explore the synergistic mechanism of lignin chromophore modifications via UV treatment and to analyze the effects of mechanical treatments on LCNF properties for future uses. The procedure involved two steps: first, lignin's chromophore modification via UV illumination, and then the ball milling process was proceeded for 1 h, followed by high-intensity ultrasonic for 15-135 min. Characterization included preserved lignin content percentage, FTIR, UV-vis NMR, and color analysis for UV-modified samples, and to access the influence of mechanical treatment on LCNF samples further yield, zeta potential analysis, XRD, thermogravimetric analysis, atomic force microscopy, and scanning electron microscopy were performed. LCNFs S-120 demonstrated a zeta potential of -21.7 mV, indicating enhanced stability compared to the S-135 sample (-10.95 mV). The S-120 sample also showed the highest yield (74.02 %) and TGA at 391 °C. In XRD analysis, the S-120 sample demonstrated the highest CrI 64.3 %, than the S-15 sample (48.2 %). Preserved lignin in the LCNFs led to a slight reduction in crystallinity across all samples but improved thermal stability for all the prepared LCNFs samples. The UV and ultrasonication improved the homogeneity and durability of the LCNF samples, enabling a process that may be used to industries.
本研究旨在探索通过紫外线处理对木质素发色团进行改性的协同机制,并分析机械处理对用于未来用途的木质纤维素纳米纤丝(LCNF)性能的影响。该过程包括两个步骤:首先,通过紫外线照射对木质素的发色团进行改性,然后进行1小时的球磨过程,接着进行15 - 135分钟的高强度超声处理。表征包括对紫外线改性样品的保留木质素含量百分比、傅里叶变换红外光谱(FTIR)、紫外 - 可见核磁共振(UV - vis NMR)和颜色分析,为进一步了解机械处理对LCNF样品的影响,还进行了产率、zeta电位分析、X射线衍射(XRD)、热重分析、原子力显微镜和扫描电子显微镜分析。LCNFs S - 120的zeta电位为 - 21.7 mV,表明与S - 135样品( - 10.95 mV)相比稳定性增强。S - 120样品还显示出最高产率(74.02%)和391°C时的热重分析结果。在XRD分析中,S - 120样品的结晶度指数(CrI)最高,为64.3%,高于S - 15样品(48.2%)。LCNFs中保留的木质素导致所有样品的结晶度略有降低,但提高了所有制备的LCNF样品的热稳定性。紫外线和超声处理提高了LCNF样品的均匀性和耐久性,使该过程可用于工业生产。