Zhao Jixiang, Zhu Minyu, Jin Wei, Zhang Jinlan, Fan Guangyu, Feng Yifan, Li Zhuo, Wang Siming, Lee Jung Seung, Luan Guangxiang, Dong Zhengqi, Li Ying
Department of Pharmacy, Medical College, Qinghai University, Xining, 810016, PR China.
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, PR China.
J Nanobiotechnology. 2025 Jul 24;23(1):538. doi: 10.1186/s12951-025-03604-7.
Inspired by natural organisms, biomimetic materials with exceptional biocompatibility, degradability, and multifunctionality have emerged as promising candidates for biomedical applications. Lignin, a plant-derived organic polymer, has gained attention due to its intrinsic antioxidant activity, adhesive properties, and biocompatibility. Despite its structural advantages, challenges in stability, biodegradability, and practical implementation hinder its utilization. Structural modifications through chemical/physical treatments or microbial/enzymatic can optimize lignin's bioactivity, mechanical strength, and adhesion, enabling applications in drug delivery, Ultraviolet (UV) shielding, sensing, and wound healing. This review outlines lignin sources, modification principles, and adhesion of biomaterials mechanisms, while showcasing innovative lignin-based materials in biomedical contexts. We highlight their roles in therapeutic delivery systems, tissue engineering & regenerative medicine, and functional biomedical devices, emphasizing lignin's low toxicity and environmental adaptability. By addressing current limitations in processing techniques and clinical translation, we discuss lignin's potential to bridge laboratory research and practical medical solutions. The analysis concludes with an evaluation of lignin's untapped value in sustainable biomedicine, proposing strategies to overcome scalability and standardization barriers. This synthesis provides critical insights for advancing lignin-based technologies toward clinical implementation while maintaining ecological sustainability.
受天然生物体的启发,具有卓越生物相容性、可降解性和多功能性的仿生材料已成为生物医学应用的有前途的候选材料。木质素是一种植物源有机聚合物,因其固有的抗氧化活性、粘附特性和生物相容性而受到关注。尽管其具有结构优势,但稳定性、生物可降解性和实际应用方面的挑战阻碍了其利用。通过化学/物理处理或微生物/酶促进行的结构修饰可以优化木质素的生物活性、机械强度和粘附性,使其能够应用于药物递送、紫外线屏蔽、传感和伤口愈合。本综述概述了木质素的来源、修饰原理以及生物材料的粘附机制,同时展示了生物医学背景下基于木质素的创新材料。我们强调它们在治疗递送系统、组织工程与再生医学以及功能性生物医学设备中的作用,强调木质素的低毒性和环境适应性。通过解决当前加工技术和临床转化方面的限制,我们讨论了木质素在弥合实验室研究与实际医学解决方案之间差距的潜力。分析最后评估了木质素在可持续生物医学中未开发的价值,提出了克服可扩展性和标准化障碍的策略。这一综述为推动基于木质素的技术走向临床应用同时保持生态可持续性提供了关键见解。
Int J Biol Macromol. 2025-7
AAPS PharmSciTech. 2025-4-17
Acta Biomater. 2025-5-2
Int J Biol Macromol. 2025-7
J Mater Chem B. 2025-1-22
Biochem Biophys Res Commun. 2025-8-15
Chem Soc Rev. 2025-6-10
Polymers (Basel). 2024-12-8
ACS Sustain Chem Eng. 2024-11-14
Int J Biol Macromol. 2024-11