Suppr超能文献

基于对比增强磁共振成像的深度学习影像组学在术前预测肝细胞癌根治性切除术后早期复发中的应用

Deep learning radiomics based on contrast enhanced MRI for preoperatively predicting early recurrence in hepatocellular carcinoma after curative resection.

作者信息

Zhao Ying, Wang Sen, Wang Yue, Li Jun, Liu Jinghong, Liu Yuhui, Ji Haitong, Su Wenhan, Zhang Qinhe, Song Qingwei, Yao Yu, Liu Ailian

机构信息

Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China.

Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, China.

出版信息

Front Oncol. 2024 Nov 8;14:1446386. doi: 10.3389/fonc.2024.1446386. eCollection 2024.

Abstract

PURPOSE

To explore the role of deep learning (DL) and radiomics-based integrated approach based on contrast enhanced magnetic resonance imaging (CEMRI) for predicting early recurrence (ER) in hepatocellular carcinoma (HCC) patients after curative resection.

METHODS

Total 165 HCC patients (ER, = 96 vs. non-early recurrence (NER), = 69) were retrospectively collected and divided into a training cohort ( = 132) and a validation cohort ( = 33). From pretreatment CEMR images, a total of 3111 radiomics features were extracted, and radiomics models were constructed using five machine learning classifiers (logistic regression, support vector machine, k-nearest neighbor, extreme gradient Boosting, and multilayer perceptron). DL models were established via three variations of ResNet architecture. The clinical-radiological (CR), radiomics combined with clinical-radiological (RCR), and deep learning combined with RCR (DLRCR) models were constructed. Model discrimination, calibration, and clinical utilities were evaluated by receiver operating characteristic curve, calibration curve, and decision curve analysis, respectively. The best-performing model was compared with the widely used staging systems and preoperative prognostic indexes.

RESULTS

The RCR model (area under the curve (AUC): 0.841 and 0.811) and the optimal radiomics model (AUC: 0.839 and 0.804) achieved better performance than the CR model (AUC: 0.662 and 0.752) in the training and validation cohorts, respectively. The optimal DL model (AUC: 0.870 and 0.826) outperformed the radiomics model in the both cohorts. The DL, radiomics, and CR predictors (aspartate aminotransferase (AST) and tumor diameter) were combined to construct the DLRCR model. The DLRCR model presented the best performance over any model, yielding an AUC, an accuracy, a sensitivity, a specificity of 0.917, 0.886, 0.889, and 0.882 in the training cohort and of 0.844, 0.818, 0.800, and 0.846 in the validation cohort, respectively. The DLRCR model achieved better clinical utility compared to the clinical staging systems and prognostic indexes.

CONCLUSION

Both radiomics and DL models derived from CEMRI can predict HCC recurrence, and DL and radiomics-based integrated approach can provide a more effective tool for the precise prediction of ER for HCC patients undergoing resection.

摘要

目的

探讨基于对比增强磁共振成像(CEMRI)的深度学习(DL)和基于影像组学的综合方法在预测肝细胞癌(HCC)患者根治性切除术后早期复发(ER)中的作用。

方法

回顾性收集165例HCC患者(早期复发组,n = 96;非早期复发组,n = 69),并分为训练队列(n = 132)和验证队列(n = 33)。从治疗前的CEMR图像中提取了总共3111个影像组学特征,并使用五种机器学习分类器(逻辑回归、支持向量机、k近邻、极限梯度提升和多层感知器)构建了影像组学模型。通过ResNet架构的三种变体建立了DL模型。构建了临床-放射学(CR)、影像组学联合临床-放射学(RCR)以及深度学习联合RCR(DLRCR)模型。分别通过受试者操作特征曲线、校准曲线和决策曲线分析评估模型的辨别力、校准度和临床实用性。将表现最佳的模型与广泛使用的分期系统和术前预后指标进行比较。

结果

在训练队列和验证队列中,RCR模型(曲线下面积(AUC):0.841和0.811)和最佳影像组学模型(AUC:0.839和0.804)分别比CR模型(AUC:0.662和0.752)表现更好。最佳DL模型(AUC:0.870和0.826)在两个队列中均优于影像组学模型。将DL、影像组学和CR预测因子(天冬氨酸转氨酶(AST)和肿瘤直径)相结合构建了DLRCR模型。DLRCR模型在所有模型中表现最佳,在训练队列中的AUC、准确率、灵敏度、特异度分别为0.917、0.886、0.889和0.882,在验证队列中分别为0.844、0.818、0.800和0.846。与临床分期系统和预后指标相比,DLRCR模型具有更好的临床实用性。

结论

源自CEMRI的影像组学和DL模型均可预测HCC复发,基于DL和影像组学的综合方法可为接受手术的HCC患者的ER精确预测提供更有效的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db99/11581961/800270b49d5a/fonc-14-1446386-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验