文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于对比增强 CT 的深度学习放射组学预测早期肝细胞癌的微血管侵犯和生存结局。

Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma.

机构信息

West China School of Medicine, Sichuan University, No.17 People's South Road, Chengdu, 610041, Sichuan, China.

West China Hospital, Sichuan University, Guoxue Road 37, Chengdu, 610041, China.

出版信息

Eur J Surg Oncol. 2022 May;48(5):1068-1077. doi: 10.1016/j.ejso.2021.11.120. Epub 2021 Nov 19.


DOI:10.1016/j.ejso.2021.11.120
PMID:34862094
Abstract

OBJECTIVE: To evaluate the performance of a deep learning (DL)-based radiomics strategy on contrast-enhanced computed tomography (CT) to predict microvascular invasion (MVI) status and clinical outcomes, recurrence-free survival (RFS) and overall survival (OS) in patients with early stage hepatocellular carcinoma (HCC) receiving surgical resection. METHODS: All 283 eligible patients were included retrospectively between January 2008 and December 2015, and assigned into the training cohort (n = 198) and the testing cohort (n = 85). We extracted radiomics features via handcrafted radiomics analysis manually and DL analysis of pretrained convolutional neural networks via transfer learning automatically. Support vector machine was adopted as the classifier. A clinical-radiological model for MVI status integrated significant clinical features and the radiological signature generated from the radiological model with the optimal area under the receiver operating characteristics curve (AUC) in the testing cohort. Otherwise, DL-based prognostic models were constructed in prediction of recurrence and mortality via Cox proportional hazard analysis. RESULTS: The clinical-radiological model for MVI represented an AUC of 0.909, accuracy of 96.47%, sensitivity of 90.91%, specificity of 97.30%, positive predictive value of 83.33%, and negative predictive value of 98.63% in the testing cohort. The clinical-radiological models for identification of RFS and OS outperformed prediction performance of the clinical model or the DL signature alone. The DL-based integrated model for prognostication showed great predictive value with significant classification and discrimination abilities after validation. CONCLUSIONS: The integrated DL-based radiomics models achieved accurate preoperative prediction of MVI status, and might facilitate predicting tumor recurrence and mortality in order to optimize clinical decisions for patients with early stage HCC.

摘要

目的:评估基于深度学习(DL)的放射组学策略在增强 CT 上预测微血管侵犯(MVI)状态和临床结局、无复发生存(RFS)和总生存(OS)的性能,以用于接受手术切除的早期肝细胞癌(HCC)患者。

方法:所有 283 名符合条件的患者均于 2008 年 1 月至 2015 年 12 月间被回顾性地纳入研究,分为训练队列(n=198)和测试队列(n=85)。我们通过手工提取放射组学特征和通过预训练的卷积神经网络进行自动转移学习提取放射组学特征。采用支持向量机作为分类器。在测试队列中,通过 Cox 比例风险分析构建了用于预测复发和死亡率的基于 DL 的预后模型。通过与最佳受试者工作特征曲线(AUC)下的放射学模型生成的放射学特征相结合,建立了用于 MVI 状态的临床-放射学模型。

结果:在测试队列中,用于 MVI 的临床-放射学模型的 AUC 为 0.909,准确率为 96.47%,敏感度为 90.91%,特异度为 97.30%,阳性预测值为 83.33%,阴性预测值为 98.63%。用于识别 RFS 和 OS 的临床-放射学模型的预测性能优于临床模型或 DL 特征的预测性能。经过验证,基于 DL 的综合预后模型具有良好的预测价值,具有显著的分类和鉴别能力。

结论:基于 DL 的综合放射组学模型可以准确预测 MVI 状态,有助于预测肿瘤复发和死亡率,从而优化早期 HCC 患者的临床决策。

相似文献

[1]
Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma.

Eur J Surg Oncol. 2022-5

[2]
Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters.

J Cancer Res Clin Oncol. 2021-12

[3]
A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma.

Eur J Surg Oncol. 2023-1

[4]
Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma.

J Hepatol. 2019-3-13

[5]
MRI-based clinical-radiomics nomogram model for predicting microvascular invasion in hepatocellular carcinoma.

Med Phys. 2024-7

[6]
Radiomics model based on contrast-enhanced computed tomography imaging for early recurrence monitoring after radical resection of AFP-negative hepatocellular carcinoma.

BMC Cancer. 2024-6-7

[7]
Influence of different region of interest sizes on CT-based radiomics model for microvascular invasion prediction in hepatocellular carcinoma.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022-8-28

[8]
Prediction of preoperative microvascular invasion by dynamic radiomic analysis based on contrast-enhanced computed tomography.

Abdom Radiol (NY). 2024-2

[9]
[Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma].

Zhonghua Yi Xue Za Zhi. 2021-5-11

[10]
Magnetic Resonance Deep Learning Radiomic Model Based on Distinct Metastatic Vascular Patterns for Evaluating Recurrence-Free Survival in Hepatocellular Carcinoma.

J Magn Reson Imaging. 2024-7

引用本文的文献

[1]
Molecular subtyping combined with multiomics analysis to study correlation between TACE refractoriness and tumor stemness in hepatocellular carcinoma.

Discov Oncol. 2025-2-17

[2]
An interpretable ensemble model combining handcrafted radiomics and deep learning for predicting the overall survival of hepatocellular carcinoma patients after stereotactic body radiation therapy.

J Cancer Res Clin Oncol. 2025-2-14

[3]
Deep Learning Radiomics for Survival Prediction in Non-Small-Cell Lung Cancer Patients from CT Images.

J Med Syst. 2025-2-11

[4]
Deep learning-based CT radiomics predicts prognosis of unresectable hepatocellular carcinoma treated with TACE-HAIC combined with PD-1 inhibitors and tyrosine kinase inhibitors.

BMC Gastroenterol. 2025-1-21

[5]
Artificial intelligence techniques in liver cancer.

Front Oncol. 2024-9-3

[6]
Predicting prognosis for epithelial ovarian cancer patients receiving bevacizumab treatment with CT-based deep learning.

NPJ Precis Oncol. 2024-9-13

[7]
Preoperative prediction of microvascular invasion risk in hepatocellular carcinoma with MRI: peritumoral versus tumor region.

Insights Imaging. 2024-8-1

[8]
Multimodal imaging-based prediction of recurrence for unresectable HCC after downstage and resection-cohort study.

Int J Surg. 2024-9-1

[9]
Radiomics features based on dual-area CT predict the expression levels of fatty acid binding protein 4 and outcome in hepatocellular carcinoma.

Abdom Radiol (NY). 2024-6

[10]
Preoperative and Prognostic Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Review Based on Artificial Intelligence.

Technol Cancer Res Treat. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索