West China School of Medicine, Sichuan University, No.17 People's South Road, Chengdu, 610041, Sichuan, China.
West China Hospital, Sichuan University, Guoxue Road 37, Chengdu, 610041, China.
Eur J Surg Oncol. 2022 May;48(5):1068-1077. doi: 10.1016/j.ejso.2021.11.120. Epub 2021 Nov 19.
OBJECTIVE: To evaluate the performance of a deep learning (DL)-based radiomics strategy on contrast-enhanced computed tomography (CT) to predict microvascular invasion (MVI) status and clinical outcomes, recurrence-free survival (RFS) and overall survival (OS) in patients with early stage hepatocellular carcinoma (HCC) receiving surgical resection. METHODS: All 283 eligible patients were included retrospectively between January 2008 and December 2015, and assigned into the training cohort (n = 198) and the testing cohort (n = 85). We extracted radiomics features via handcrafted radiomics analysis manually and DL analysis of pretrained convolutional neural networks via transfer learning automatically. Support vector machine was adopted as the classifier. A clinical-radiological model for MVI status integrated significant clinical features and the radiological signature generated from the radiological model with the optimal area under the receiver operating characteristics curve (AUC) in the testing cohort. Otherwise, DL-based prognostic models were constructed in prediction of recurrence and mortality via Cox proportional hazard analysis. RESULTS: The clinical-radiological model for MVI represented an AUC of 0.909, accuracy of 96.47%, sensitivity of 90.91%, specificity of 97.30%, positive predictive value of 83.33%, and negative predictive value of 98.63% in the testing cohort. The clinical-radiological models for identification of RFS and OS outperformed prediction performance of the clinical model or the DL signature alone. The DL-based integrated model for prognostication showed great predictive value with significant classification and discrimination abilities after validation. CONCLUSIONS: The integrated DL-based radiomics models achieved accurate preoperative prediction of MVI status, and might facilitate predicting tumor recurrence and mortality in order to optimize clinical decisions for patients with early stage HCC.
目的:评估基于深度学习(DL)的放射组学策略在增强 CT 上预测微血管侵犯(MVI)状态和临床结局、无复发生存(RFS)和总生存(OS)的性能,以用于接受手术切除的早期肝细胞癌(HCC)患者。
方法:所有 283 名符合条件的患者均于 2008 年 1 月至 2015 年 12 月间被回顾性地纳入研究,分为训练队列(n=198)和测试队列(n=85)。我们通过手工提取放射组学特征和通过预训练的卷积神经网络进行自动转移学习提取放射组学特征。采用支持向量机作为分类器。在测试队列中,通过 Cox 比例风险分析构建了用于预测复发和死亡率的基于 DL 的预后模型。通过与最佳受试者工作特征曲线(AUC)下的放射学模型生成的放射学特征相结合,建立了用于 MVI 状态的临床-放射学模型。
结果:在测试队列中,用于 MVI 的临床-放射学模型的 AUC 为 0.909,准确率为 96.47%,敏感度为 90.91%,特异度为 97.30%,阳性预测值为 83.33%,阴性预测值为 98.63%。用于识别 RFS 和 OS 的临床-放射学模型的预测性能优于临床模型或 DL 特征的预测性能。经过验证,基于 DL 的综合预后模型具有良好的预测价值,具有显著的分类和鉴别能力。
结论:基于 DL 的综合放射组学模型可以准确预测 MVI 状态,有助于预测肿瘤复发和死亡率,从而优化早期 HCC 患者的临床决策。
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022-8-28
Front Oncol. 2024-9-3