Neto Alvaro S, Wainaina Steven, Chandolias Konstantinos, Piatek Pawel, Taherzadeh Mohammad J
Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden.
Millow AB, Gothenburg, Sweden.
Curr Pollut Rep. 2025;11(1):7. doi: 10.1007/s40726-024-00337-3. Epub 2024 Nov 21.
Synthesis gas (syngas) fermentation represents a promising biological method for converting industrial waste gases, particularly carbon monoxide (CO) and carbon dioxide (CO₂) from industrial sources (e.g. steel production or municipal waste gasification), into high-value products such as biofuels, chemicals, and animal feed using acetogenic bacteria. This review identifies and addresses key challenges that hinder the large-scale adoption of this technology, including limitations in gas mass transfer, an incomplete understanding of microbial metabolic pathways, and suboptimal bioprocess conditions. Our findings emphasize the critical role of microbial strain selection and bioprocess optimization to enhance productivity and scalability, with a focus on utilizing diverse microbial consortia and efficient reactor systems. By examining recent advancements in microbial conditioning, operational parameters, and reactor design, this study provides actionable insights to improve syngas fermentation efficiency, suggesting pathways towards overcoming current technical barriers for its broader industrial application beyond the production of bulk chemicals.
合成气发酵是一种很有前景的生物方法,可利用产乙酸细菌将工业废气,特别是来自工业源(如钢铁生产或城市垃圾气化)的一氧化碳(CO)和二氧化碳(CO₂)转化为生物燃料、化学品和动物饲料等高价值产品。本综述确定并解决了阻碍该技术大规模应用的关键挑战,包括气体传质的限制、对微生物代谢途径的不完全理解以及次优的生物工艺条件。我们的研究结果强调了微生物菌株选择和生物工艺优化对提高生产率和可扩展性的关键作用,重点是利用不同的微生物群落和高效的反应器系统。通过研究微生物调节、操作参数和反应器设计方面的最新进展,本研究提供了可提高合成气发酵效率的可行见解,提出了克服当前技术障碍以实现其在大宗化学品生产之外更广泛工业应用的途径。