Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America.
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America.
Biomed Mater. 2024 Nov 25;20(1). doi: 10.1088/1748-605X/ad8540.
Thiol-norbornene photoclick hydrogels are highly efficient in tissue engineering applications due to their fast gelation, cytocompatibility, and tunability. In this work, we utilized the advantageous features of polyethylene glycol (PEG)-thiol-ene resins to enable fabrication of complex and heterogeneous tissue scaffolds using 3D bioprinting and in-air drop encapsulation techniques. We demonstrated that photoclickable PEG-thiol-ene resins could be tuned by varying the ratio of PEG-dithiol to PEG norbornene to generate a wide range of mechanical stiffness (0.5-12 kPa) and swelling ratios. Importantly, all formulations maintained a constant, rapid gelation time (<0.5 s). We used this resin in biological projection microstereolithography (BioPSL) to print complex structures with geometric fidelity and demonstrated biocompatibility by printing cell-laden microgrids. Moreover, the rapid gelling kinetics of this resin permitted high-throughput fabrication of tunable, cell-laden microgels in air using a biological in-air drop encapsulation apparatus (BioIDEA). We demonstrated that these microgels could support cell viability and be assembled into a gradient structure. This PEG-thiol-ene resin, along with BioPSL and BioIDEA technology, will allow rapid fabrication of complex and heterogeneous tissues that mimic native tissues with cellular and mechanical gradients. The engineered tissue scaffolds with a controlled microscale porosity could be utilized in applications including gradient tissue engineering, biosensing, andtissue models.
硫醇-降冰片烯光点击水凝胶由于其快速凝胶化、细胞相容性和可调节性,在组织工程应用中非常有效。在这项工作中,我们利用聚乙二醇(PEG)-硫醇-烯树脂的优势特征,使用 3D 生物打印和空气中滴液包封技术制造复杂和异质的组织支架。我们证明,光可点击的 PEG-硫醇-烯树脂可以通过改变 PEG-二硫醇与 PEG 降冰片烯的比例来调节,从而产生广泛的机械刚度(0.5-12 kPa)和溶胀比。重要的是,所有配方都保持恒定的快速凝胶化时间(<0.5 s)。我们在生物投影微立体光刻(BioPSL)中使用这种树脂打印具有几何保真度的复杂结构,并通过打印细胞负载微网格证明了其生物相容性。此外,这种树脂的快速凝胶动力学允许使用生物空气滴封装装置(BioIDEA)在空气中高通量制造可调节的、细胞负载的微凝胶。我们证明这些微凝胶可以支持细胞活力,并组装成梯度结构。这种 PEG-硫醇-烯树脂,以及 BioPSL 和 BioIDEA 技术,将允许快速制造模仿具有细胞和机械梯度的天然组织的复杂和异质组织。具有受控微尺度孔隙率的工程化组织支架可用于包括梯度组织工程、生物传感和组织模型在内的应用。