Suppr超能文献

单碱基腺嘌呤甲基化的可视化与定量分析

Visualization and Quantification of Single-Base mA Methylation.

作者信息

Zhang Qiushuang, Dai Yicong, Teng Xucong, Li Jinghong

机构信息

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.

Beijing Life Science Academy, Beijing, 102209, China.

出版信息

Angew Chem Int Ed Engl. 2025 Feb 3;64(6):e202420977. doi: 10.1002/anie.202420977. Epub 2024 Dec 4.

Abstract

N-methyladenosine (mA) has emerged as the most prevalent form of RNA modification found across various RNA classes. The detection and quantification of mA RNA modifications under various physiological conditions are crucial for elucidating disease mechanisms and identifying potential therapeutic targets. However, visualizing intracellular mA modifications at single-base resolution remains a significant challenge. Existing methods based on high-throughput sequencing or in vitro assays are not suitable for in situ mA RNA imaging. In this work, we introduce the TadA8.20-assisted N-methyladenosine RNA imaging at single-base resolution (TARS) method for precise visualization and quantification of both A and mA forms at specific RNA sites within single cells. Validation studies using TARS on MALAT1 lncRNA in HeLa cells and CCND1 mRNA in breast cancer cell lines demonstrated its high specificity and efficiency in mapping and quantifying mA modifications at single-base resolution. TARS represents a novel tool that advances mA RNA modification research by offering accurate and detailed insights into mA modifications at the single-base level.

摘要

N-甲基腺苷(mA)已成为在各种RNA类别中发现的最普遍的RNA修饰形式。在各种生理条件下检测和定量mA RNA修饰对于阐明疾病机制和确定潜在的治疗靶点至关重要。然而,以单碱基分辨率可视化细胞内的mA修饰仍然是一项重大挑战。现有的基于高通量测序或体外测定的方法不适用于原位mA RNA成像。在这项工作中,我们引入了单碱基分辨率的TadA8.20辅助N-甲基腺苷RNA成像(TARS)方法,用于在单细胞内的特定RNA位点精确可视化和定量A和mA形式。使用TARS对HeLa细胞中的MALAT1 lncRNA和乳腺癌细胞系中的CCND1 mRNA进行的验证研究证明了其在单碱基分辨率下绘制和定量mA修饰方面的高特异性和效率。TARS是一种新颖的工具,通过在单碱基水平上提供对mA修饰的准确而详细的见解,推动了mA RNA修饰研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验