Department of Mathematics, School of Advanced Science (SAS), VIT-AP University, Amaravathi, India.
J Biol Phys. 2024 Nov 25;51(1):3. doi: 10.1007/s10867-024-09664-4.
Bioconvective flows over a thin needle hold significant importance in various fields, particularly in biomedical engineering, microfluidics, and environmental science. This paper examines the bioconvective flow properties of a copper and blood-based Casson nanofluid over a thin needle, accounting for gyrotactic microorganisms in the presence of a magnetic field. The two-phase nanofluid model is applied to formulate the flow problem. The system of non-dimensional ordinary differential equations is obtained by reducing the governing partial differential equations with the help of similarity variables. Further, the ODEs are numerically solved using the 4th-order Runge-Kutta method based Shooting technique. The similar solutions of the non-dimensional ODEs are represented graphically and the blood-based nanofluid's velocity, temperature, concentration, and presence of microorganisms are examined with reference to the accompanying diagrams. A detailed analysis is provided for skin friction, Nusselt number, and microorganism density number. The primary outcomes reveal that the augmentation of the mixed convection parameter and buoyancy ratio parameter enhance the rate of heat transfer.
生物对流在细针上的流动具有重要意义,特别是在生物医学工程、微流控和环境科学等领域。本文研究了在磁场存在下,铜基和血液基 Casson 纳米流体在细针上的生物对流流动特性,其中考虑了旋毛虫微生物。采用两相纳米流体模型来构建流动问题。通过相似变量的帮助,将控制偏微分方程简化为无量纲常微分方程。进一步,使用基于打靶法的 4 阶龙格-库塔方法数值求解 ODE。无量纲 ODE 的相似解以图形方式表示,并参考伴随的图表来检查血液基纳米流体的速度、温度、浓度和微生物的存在。对摩擦系数、努塞尔数和微生物密度数进行了详细分析。主要结果表明,混合对流参数和浮力比参数的增加会提高传热速率。