Sagadevan Prabhakar, Raju Umadevi, Murugesan Meganathan, Fernandez-Gamiz Unai, Noeiaghdam Samad
Department of Mathematics, S.A. Engineering College (Autonomous), Chennai-600077, Tamilnadu, India.
Department of Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur-602117, Tamilnadu, India.
Heliyon. 2024 Dec 17;11(1):e41238. doi: 10.1016/j.heliyon.2024.e41238. eCollection 2025 Jan 15.
This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc. Specifically, the study seeks to understand how the non-Newtonian rheology of Casson fluids, enhanced by nanoparticles, affects heat and mass transfer and how bioconvection driven by motile microorganisms impacts the reaction kinetics and fluid dynamics. The significance of studying chemical reactions in Casson nanofluid flow with bioconvective microorganisms over a spinning disc lies in its broad applicability to fields such as chemical engineering, biomedical engineering, environmental science, and nanotechnology. Using the right variables to change the nonlinear partial differential equations (PDEs) that govern the problem into a system of ordinary differential equations (ODEs) is a key step toward finding numerical solutions. Using numerical methods such as the bvp4c approach, the study explores the solutions to these intricate equations. Key focus areas include assessing the impacts of different parameters on the thermal field, nanoparticle concentration, and microbiological field. Graphical representations provide information on the velocity, temperature, concentration, and microorganism profiles, elucidating the underlying physical effects. Furthermore, the study evaluates the wall shear stress, the local Nusselt number, the local Sherwood number, and the local motile density number, providing graphical explanations to elucidate these phenomena. Notably, it highlights the distinction in the rate of the motile density number between reversible and irreversible flows concerning Brownian motion and Peclet number. The findings of the theoretical simulations have significant implications for biotechnology and thermal engineering, offering dynamic insights into practical applications within these fields.
本研究考察了卡森纳米流体在旋转圆盘周围的生物对流流动行为,该流动受到多种因素影响,包括趋旋微生物、多重滑移和热辐射。值得注意的是,它考虑了流动的可逆性质并纳入了酯化过程。本研究的目的是研究在旋转圆盘上存在生物对流微生物的情况下,可逆化学反应对卡森纳米流体流动行为的影响。具体而言,该研究旨在了解纳米颗粒增强的卡森流体的非牛顿流变学如何影响传热传质,以及能动微生物驱动的生物对流如何影响反应动力学和流体动力学。研究卡森纳米流体与旋转圆盘上的生物对流微生物的流动中的化学反应的意义在于其在化学工程、生物医学工程、环境科学和纳米技术等领域的广泛适用性。使用合适的变量将控制该问题的非线性偏微分方程(PDE)转化为常微分方程(ODE)系统是找到数值解的关键一步。利用诸如bvp4c方法等数值方法,该研究探索了这些复杂方程的解。关键关注领域包括评估不同参数对热场、纳米颗粒浓度和微生物场的影响。图形表示提供了关于速度、温度、浓度和微生物分布的信息,阐明了潜在的物理效应。此外,该研究评估了壁面剪应力、局部努塞尔数、局部舍伍德数和局部能动密度数,并提供图形解释以阐明这些现象。值得注意的是,它突出了在涉及布朗运动和佩克莱数的可逆和不可逆流动中能动密度数速率的差异。理论模拟的结果对生物技术和热工程具有重要意义,为这些领域内的实际应用提供了动态见解。