Suppr超能文献

使用Adam优化器和标签平滑对不同YOLOv7网络在支气管肺泡灌洗液中进行高精度细胞分类的性能比较

A Performance Comparison of Different YOLOv7 Networks for High-Accuracy Cell Classification in Bronchoalveolar Lavage Fluid Utilising the Adam Optimiser and Label Smoothing.

作者信息

Rumpf Sebastian, Zufall Nicola, Rumpf Florian, Gschwendtner Andreas

机构信息

University of Wuerzburg, Sanderring 2, 97070, Würzburg, Germany.

Institute for Pathology, Kulmbach Hospital, Albert-Schweitzer-Strasse 10, 95326, Kulmbach, Germany.

出版信息

J Imaging Inform Med. 2025 Aug;38(4):2367-2380. doi: 10.1007/s10278-024-01315-3. Epub 2024 Nov 25.

Abstract

Accurate classification of cells in bronchoalveolar lavage (BAL) fluid is essential for the assessment of lung disease in pneumology and critical care medicine. However, the effectiveness of BAL fluid analysis is highly dependent on individual expertise. Our research is focused on improving the accuracy and efficiency of BAL cell classification using the "You Only Look Once" (YOLO) algorithm to reduce variability and increase the accuracy of cell detection in BALF analysis. We assess various YOLOv7 iterations, including YOLOv7, YOLOv7 with Adam and label smoothing, YOLOv7-E6E, and YOLOv7-E6E with Adam and label smoothing focusing on the detection of four key cell types of diagnostic importance in BAL fluid: macrophages, lymphocytes, neutrophils, and eosinophils. This study utilised cytospin preparations of BAL fluid, employing May-Grunwald-Giemsa staining, and analysed a dataset comprising 2032 images with 42,221 annotations. Classification performance was evaluated using recall, precision, F1 score, mAP@.5, and mAP@.5;.95 along with a confusion matrix. The comparison of four algorithmic approaches revealed minor distinctions in mean results, falling short of statistical significance (p < 0.01; p < 0.05). YOLOv7, with an inference time of 13.5 ms for 640 × 640 px images, achieved commendable performance across all cell types, boasting an average F1 metric of 0.922, precision of 0.916, recall of 0.928, and mAP@.5 of 0.966. Remarkably, all four cell types were classified consistently with high-performance metrics. Notably, YOLOv7 demonstrated marginally superior class value dispersion when compared to YOLOv7-adam-label-smoothing, YOLOv7-E6E, and YOLOv7-E6E-adam-label-smoothing, albeit without statistical significance. Consequently, there is limited justification for deploying the more computationally intensive YOLOv7-E6E and YOLOv7-E6E-adam-label-smoothing models. This investigation indicates that the default YOLOv7 variant is the preferred choice for differential cytology due to its accessibility, lower computational demands, and overall more consistent results than more complex models.

摘要

准确分类支气管肺泡灌洗(BAL)液中的细胞对于肺病学和重症医学中肺部疾病的评估至关重要。然而,BAL液分析的有效性高度依赖于个人专业知识。我们的研究专注于使用“你只看一次”(YOLO)算法提高BAL细胞分类的准确性和效率,以减少变异性并提高BALF分析中细胞检测的准确性。我们评估了各种YOLOv7迭代版本,包括YOLOv7、带有Adam和标签平滑的YOLOv7、YOLOv7-E6E以及带有Adam和标签平滑的YOLOv7-E6E,重点是检测BAL液中四种具有诊断重要性的关键细胞类型:巨噬细胞、淋巴细胞、中性粒细胞和嗜酸性粒细胞。本研究利用BAL液的细胞离心涂片制备物,采用May-Grunwald-Giemsa染色,并分析了一个包含2032张图像和42221个注释的数据集。使用召回率、精确率、F1分数、mAP@.5和mAP@.5;.95以及混淆矩阵来评估分类性能。四种算法方法的比较显示平均结果的差异较小,未达到统计学显著性(p < 0.01;p < 0.05)。对于640×640像素的图像,YOLOv7的推理时间为13.5毫秒,在所有细胞类型上都取得了值得称赞的性能,其平均F1指标为0.922,精确率为0.916,召回率为0.928,mAP@.5为0.966。值得注意的是,所有四种细胞类型的分类都具有一致的高性能指标。值得注意的是,与YOLOv7-adam-标签平滑、YOLOv7-E6E和YOLOv7-E6E-adam-标签平滑相比,YOLOv7的类别值离散度略高,尽管没有统计学显著性。因此,采用计算量更大的YOLOv7-E6E和YOLOv7-E6E-adam-标签平滑模型的理由有限。这项研究表明,默认的YOLOv7变体是鉴别细胞学的首选,因为它易于使用,计算需求较低,并且与更复杂的模型相比,总体结果更一致。

相似文献

3
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
8
Lamotrigine versus carbamazepine monotherapy for epilepsy: an individual participant data review.
Cochrane Database Syst Rev. 2018 Jun 28;6(6):CD001031. doi: 10.1002/14651858.CD001031.pub4.
10

引用本文的文献

本文引用的文献

2
Deep Learning Neural Network-Guided Detection of Asbestos Bodies in Bronchoalveolar Lavage Samples.
Acta Cytol. 2023;67(6):650-658. doi: 10.1159/000534149. Epub 2023 Sep 19.
3
An improved Yolov5s based on transformer backbone network for detection and classification of bronchoalveolar lavage cells.
Comput Struct Biotechnol J. 2023 May 6;21:2985-3001. doi: 10.1016/j.csbj.2023.05.008. eCollection 2023.
4
Deep learning for computational cytology: A survey.
Med Image Anal. 2023 Feb;84:102691. doi: 10.1016/j.media.2022.102691. Epub 2022 Nov 14.
5
Automated interpretation and analysis of bronchoalveolar lavage fluid.
Int J Med Inform. 2022 Jan;157:104638. doi: 10.1016/j.ijmedinf.2021.104638. Epub 2021 Nov 5.
6
Bronchoscopic performance of bronchoalveolar lavage in germany - a call for standardization.
Sarcoidosis Vasc Diffuse Lung Dis. 2021;38(1):e2021003. doi: 10.36141/svdld.v38i1.10628. Epub 2021 Mar 31.
8
Challenges Developing Deep Learning Algorithms in Cytology.
Acta Cytol. 2021;65(4):301-309. doi: 10.1159/000510991. Epub 2020 Nov 2.
9
Deep Learning-Based Quantification of Pulmonary Hemosiderophages in Cytology Slides.
Sci Rep. 2020 Aug 3;10(1):9795. doi: 10.1038/s41598-020-65958-2.
10
Chronic respiratory diseases: a global view.
Lancet Respir Med. 2020 Jun;8(6):531-533. doi: 10.1016/S2213-2600(20)30157-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验